Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 1998 May;15(5):226–234. doi: 10.1023/A:1022523906655

Epigenetic Influences on Oocyte Developmental Competence: Perifollicular Vascularity and Intrafollicular Oxygen

Jonathan Van Blerkom 1
PMCID: PMC3454759  PMID: 9604752

Abstract

Purpose:Studies indicating that the developmental competence of the human oocyte is influenced by the level of intrafollicular oxygen are described.

Methods:Perifollicular vascularity and dissolved oxygen content were determined by color Doppler ultrasonography and analysis of follicular fluid at ovum retrieval, respectively, in stimulated cycles for in vitro fertilization.

Results:Differences in the degree of perifollicular vascularity correlate with differences in the dissolved oxygen content of the corresponding follicular fluid. Oocytes with cytoplasmic and chromosomal disorders and embryos with multinucleated blastomeres and limited developmental ability were derived predominantly from underoxygenated follicles. Findings from several studies indicate that embryos with the highest implantation potential originate from follicles that are well-vascularized and oxygenated.

Conclusions:Follicular vascularity and oxygen content appear to be important determinants of oocyte competence. Possible causes of differences in follicle-specific vascularity and the potential effects of severe hypoxia on the normality of molecular and cellular processes during follicle growth and preovulatory development are discussed.

Keywords: intrafollicular oxygen, perifollicular vascularity, oocyte competence

Full Text

The Full Text of this article is available as a PDF (941.6 KB).

REFERENCES

  • 1.Feng H, Wen X, Amet T, Presser S. Effects of different coculture systems in early human embryo development. Hum Reprod. 1996;11:1525–1528. doi: 10.1093/oxfordjournals.humrep.a019431. [DOI] [PubMed] [Google Scholar]
  • 2.Vlad M, Walker D, Kennedy R. Nuclei number in human embryos co-cultured with human ampullary cells. Hum Reprod. 1996;11:1678–1686. doi: 10.1093/oxfordjournals.humrep.a019469. [DOI] [PubMed] [Google Scholar]
  • 3.Kane M, Morgan P, Coonan C. Peptide growth factors and preimplantation development. Hum Reprod Update. 1997;3:137–157. doi: 10.1093/humupd/3.2.137. [DOI] [PubMed] [Google Scholar]
  • 4.Biggers J, Summers M, McGinnis L. Polyvinyl alcohol and amino acids as substitutes for bovine serum albumin in culture media for mouse preimplantation embryos. Hum Reprod Update. 1997;3:125–135. doi: 10.1093/humupd/3.2.125. [DOI] [PubMed] [Google Scholar]
  • 5.Quinn P, Moinipanah R, Steinberg J, Weathersbee P. Successful human in vitro fertilization using modified human tubal fluid medium lacking glucose and phosphate ions. Fertil Steril. 1995;63:922–924. doi: 10.1016/s0015-0282(16)57504-9. [DOI] [PubMed] [Google Scholar]
  • 6.Gardner D, Lane M, Calderone L, Leeton J. Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviductal and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–353. doi: 10.1016/s0015-0282(16)58097-2. [DOI] [PubMed] [Google Scholar]
  • 7.Magli M, Gianaroli L, Fiorentino A, Ferraretti A, Fortini D, Panzella S. Improved cleavage rate of human embryos cultured in antibiotic-free medium. Hum Reprod. 1996;11:1520–1524. doi: 10.1093/oxfordjournals.humrep.a019430. [DOI] [PubMed] [Google Scholar]
  • 8.Bavister B. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148. doi: 10.1093/humupd/1.2.91. [DOI] [PubMed] [Google Scholar]
  • 9.Ho Y, Wigglesworth K, Eppig J. Preimplantation development of mouse embryos in KSOM: Augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41:232–238. doi: 10.1002/mrd.1080410214. [DOI] [PubMed] [Google Scholar]
  • 10.Summers M, Bhatnagar P, Lawitts J, Biggers J. Fertilization in vitro of mouse ova from inbred and outbred strains: Complete preimplantation embryo development in glucose-supplemented KSOM. Biol Reprod. 1995;53:431–437. doi: 10.1095/biolreprod53.2.431. [DOI] [PubMed] [Google Scholar]
  • 11.Hardy K, Handyside A, Winston R. The human blastocyst: Cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107:597–604. doi: 10.1242/dev.107.3.597. [DOI] [PubMed] [Google Scholar]
  • 12.Dokras A, Sargent L, Barlow D. Human blastocyst grading: An indicator of developmental potential? Hum Reprod. 1993;8:2119–2127. doi: 10.1093/oxfordjournals.humrep.a137993. [DOI] [PubMed] [Google Scholar]
  • 13.Van Blerkom J. Development of human embryos to the hatched blastocyst stage in the presence and absence of a monolayer of Vero cells. Hum Reprod. 1993;8:1525–1539. doi: 10.1093/oxfordjournals.humrep.a138293. [DOI] [PubMed] [Google Scholar]
  • 14.Winston N, Braude P, Pickering S, George M, Cant A, Currie J, Johnson M. The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3-and 5-day human preembryos. Hum Reprod. 1991;6:17–24. doi: 10.1093/oxfordjournals.humrep.a137253. [DOI] [PubMed] [Google Scholar]
  • 15.Dokras A, Sargent L, Barlow D. The human blastocyst: Morphology and human chorionic gonadotropin secretion in vitro. Hum Reprod. 1991;6:1143–1151. doi: 10.1093/oxfordjournals.humrep.a137500. [DOI] [PubMed] [Google Scholar]
  • 16.Woodward B, Lenton E, Turner K, Grace W. Embryonic human chorionic gonadotropin secretion and hatching: Poor correlation with cleavage rate and morphological assessment during preimplantation development in vitro. Hum Reprod. 1994;9:1909–1914. doi: 10.1093/oxfordjournals.humrep.a138357. [DOI] [PubMed] [Google Scholar]
  • 17.Turner K, Lenton E. The influence of Vero cell culture on human embryo development and chorionic gonadotropin production in vitro. Hum Reprod. 1996;11:1966–1974. doi: 10.1093/oxfordjournals.humrep.a019526. [DOI] [PubMed] [Google Scholar]
  • 18.Buster J, Busillo M, Rodi I, Cohen S, Hamilton M, Simon J, Thorneycroft I, Marshall S. Biologic and morphologic development of donated human ova recovered by non-surgical uterine lavage. Am J Obstet Gynecol. 1985;153:211–217. doi: 10.1016/0002-9378(85)90116-4. [DOI] [PubMed] [Google Scholar]
  • 19.Edwards R. Causes of human pregnancy loss. Hum Reprod. 1986;1:185–198. doi: 10.1093/oxfordjournals.humrep.a136378. [DOI] [PubMed] [Google Scholar]
  • 20.Acosta A, Oehninger S, Morshedi M, Swanson R, Scott R, Irianni F. Implantation potential of each pre-embryo in multiple pregnancies obtained by in vitro fertilization seems to be different. Fertil Steril. 1988;50:906–911. doi: 10.1016/s0015-0282(16)60370-9. [DOI] [PubMed] [Google Scholar]
  • 21.Burgyone P, Holland K, Stephens R. Incidence of numerical chromosome anomalies in human pregnancy: Estimation from induced and spontaneous abortion data. Hum Reprod. 1991;6:555–564. doi: 10.1093/oxfordjournals.humrep.a137379. [DOI] [PubMed] [Google Scholar]
  • 22.Bavister B, Boatman D. The neglected human blastocyst. Hum Reprod. 1997;12:1607–1610. doi: 10.1093/oxfordjournals.humrep.a019596. [DOI] [PubMed] [Google Scholar]
  • 23.Van Blerkom J. Developmental failure in human reproduction associated with chromosomal abnormalities and cytoplasmic pathologies in meiotically mature human oocytes. In: Van Blerkom J, editor. The Biological Basis of Early Reproductive Failure in the Human: Applications to Medically-Assisted Conception. Oxford, UK: Oxford University Press; 1994. pp. 283–325. [Google Scholar]
  • 24.Kligman L, Benadiva C, Alikani M, Munne S. The occurrence of multinucleated biastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11:1492–1498. doi: 10.1093/oxfordjournals.humrep.a019424. [DOI] [PubMed] [Google Scholar]
  • 25.Battagalia D, Goodwin P, Klein N, Soules M. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11:2217–2222. doi: 10.1093/oxfordjournals.humrep.a019080. [DOI] [PubMed] [Google Scholar]
  • 26.Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: Association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1610–1614. doi: 10.1093/humrep/12.5.1047. [DOI] [PubMed] [Google Scholar]
  • 27.Van Blerkom J, Henry G. Oocyte dysmorphism and aneuploidy in meiotically-mature human oocytes after ovarian stimulation. Hum Reprod. 1992;7:379–390. doi: 10.1093/oxfordjournals.humrep.a137655. [DOI] [PubMed] [Google Scholar]
  • 28.Zenzes T, Wang P, Caster R. Evidence for a maternal predisposition to chromosomal aneuploidy in multiple oocytes of some in vitro fertilization patients. Fertil Steril. 1992;57:1396–1401. doi: 10.1016/s0015-0282(16)54791-8. [DOI] [PubMed] [Google Scholar]
  • 29.Ashwood-Smith M, Edwards R. DNA repair by oocytes. Mol Hum Reprod. 1996;2:46–51. doi: 10.1093/molehr/2.1.46. [DOI] [PubMed] [Google Scholar]
  • 30.Gigolo G, Ducayen M, Fang J, Graffeo J. Cytogenetic observations in mammalian oocytes. In: Phearson P, Lewis K, editors. Chromosomes today. New York: John Wiley and Sons; 1976. pp. 43–63. [Google Scholar]
  • 31.Van Blerkom J, Davis P. Cytogenetic analysis of living human oocytes: Cellular basis and developmental consequences of perturbations in chromosomal organization and complement. Micro Res Tech. 1994;27:165–193. doi: 10.1093/oxfordjournals.humrep.a136783. [DOI] [PubMed] [Google Scholar]
  • 32.Nargund G, Bourne T, Doyle P, Parsons J, Cheng W, Campbell S, Collins W. Association between ultrasound indices of follicular blood flow, oocyte recovery, and preimplantation embryo quality. Hum Reprod. 1996;11:109–113. doi: 10.1093/oxfordjournals.humrep.a019000. [DOI] [PubMed] [Google Scholar]
  • 33.Chui D, Pugh N, Walker S, Shaw R. Follicular vascularity—the predictive value of transvaginal Doppler ultrasonography in an in vitro fertilization programme: A preliminary study. Hum Reprod. 1997;12:191–196. doi: 10.1093/humrep/12.1.191. [DOI] [PubMed] [Google Scholar]
  • 34.Van Blerkom J. Can the developmental competence of early human embryos be predicted effectively in the clinical IVF laboratory? Hum Reprod. 1997;12:1610–1614. doi: 10.1093/oxfordjournals.humrep.a019597. [DOI] [PubMed] [Google Scholar]
  • 35.Gaulden M. The enigma of Down syndrome and other trisomic conditions. Mutat Res. 1992;269:69–88. doi: 10.1016/0165-1110(92)90033-6. [DOI] [PubMed] [Google Scholar]
  • 36.Fisher B, Kunzel W, Kleinstein J, Gips H. Oxygen tension in follicular fluid falls with follicle maturation. Eur J Obstet Gynecol Reprod Biol. 1992;43:39–43. doi: 10.1016/0028-2243(92)90241-p. [DOI] [PubMed] [Google Scholar]
  • 37.Fraser I, Baird D, Cockburn F. Ovarian venous blood PO2, PCo2 and pH in women. J Reprod Fert. 1973;33:11–17. doi: 10.1530/jrf.0.0330011. [DOI] [PubMed] [Google Scholar]
  • 38.Shalgi R, Kraicer P, Soferman N. Gases and electrolytes of human follicular fluid. J Reprod Fert. 1971;28:335–340. doi: 10.1530/jrf.0.0280335. [DOI] [PubMed] [Google Scholar]
  • 39.Gosden R, Byatt-Smith J. Oxygen concentration gradient across the ovarian follicular epithelium: Model, predictions and implications. Hum Reprod. 1986;1:65–68. doi: 10.1093/oxfordjournals.humrep.a136362. [DOI] [PubMed] [Google Scholar]
  • 40.Zeilmaker G, Hulsmann W, Wensinck F, Verhamme C. Oxygen-triggered mouse oocyte maturation in vitro and lactate utilization by mouse oocytes and zygotes. J Reprod Fert. 1972;9:151–152. doi: 10.1530/jrf.0.0290151. [DOI] [PubMed] [Google Scholar]
  • 41.Van Blerkom J, Davis P, Lee J. ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–424. doi: 10.1093/oxfordjournals.humrep.a135954. [DOI] [PubMed] [Google Scholar]
  • 42.Laufer N, Tarlatzis B, DeCherney A, Masters J, Haseltine F, MacLusky N, Naftolin F. Asynchrony between human cumulus-corona cell complex and oocyte maturation after human menopausal gonadotropin treatment for in vitro fertilization. Fertil Steril. 1984;42:366–372. doi: 10.1016/s0015-0282(16)48074-x. [DOI] [PubMed] [Google Scholar]
  • 43.Zoller L, Weisz J. Identification of cytochrome P-450, and its distribution in the membrana granulosaof the preovulatory follicle, using quantitative cytochemistry. Endocrinology. 1978;103:310–313. doi: 10.1210/endo-103-1-310. [DOI] [PubMed] [Google Scholar]
  • 44.Billig H, Furuta I, Hsueh A. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology. 1993;134:245–252. doi: 10.1210/endo.133.5.8404672. [DOI] [PubMed] [Google Scholar]
  • 45.Chun S, Billig H, Tilly J, Furuta I, Tsafrlrl A, Hsueh A. Gonadotrophin suppression of apoptosis in cultured preovulatory follicles: Mediatory role of endogenous insulin-like growth factor I. Endocrinology. 1994;35:1845–1853. doi: 10.1210/endo.135.5.7525255. [DOI] [PubMed] [Google Scholar]
  • 46.Luciano A, Pappalardo A, Ray C, Peulso J. Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biol Reprod. 1994;51:646–654. doi: 10.1095/biolreprod51.4.646. [DOI] [PubMed] [Google Scholar]
  • 47.Van Blerkom J. The influence of intrinsic and extrinsic factors on the developmental potential and chromosomal normality of the human oocyte. J Soc Gynecol Invest. 1996;3:3–11. doi: 10.1016/1071-5576(95)00041-0. [DOI] [PubMed] [Google Scholar]
  • 48.Kamat B, Brown L., Manseau E. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development. Am J Pathol. 1995;146:157–165. [PMC free article] [PubMed] [Google Scholar]
  • 49.Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–845. doi: 10.1038/359843a0. [DOI] [PubMed] [Google Scholar]
  • 50.Shweiki D, Itin A, Neufeld G. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Invest. 1993;91:2235–2243. doi: 10.1172/JCI116450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hamilton B, Paglia D, Kwan A, Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nature Med. 1995;1:953–956. doi: 10.1038/nm0995-953. [DOI] [PubMed] [Google Scholar]
  • 52.Chehab F, Lom M, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet. 1996;12:318–320. doi: 10.1038/ng0396-318. [DOI] [PubMed] [Google Scholar]
  • 53.Conway G, Jacobs H. Leptin: A hormone of reproduction. Hum Reprod. 1997;12:633–635. doi: 10.1093/humrep/12.4.633. [DOI] [PubMed] [Google Scholar]
  • 54.Cioffi J, Van Blerkom J, Antczak M, Shafer A, Wittimer S, Snodgrass R. The expression of leptin and its receptors in pre-ovulatory human follicles. Mol Hum Reprod. 1997;3:467–472. doi: 10.1093/molehr/3.6.467. [DOI] [PubMed] [Google Scholar]
  • 55.Antczak M, Van Blerkom J, Clark A. A novel mechanism of VEGF, leptin, and TGFβ2 sequestration in a subpopulation of human ovarian follicle cells. Hum Reprod. 1997;12:2226–2234. doi: 10.1093/humrep/12.10.2226. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES