Abstract
Flavonoids are a large group of nonnutrient compounds naturally produced from plants as part of their defence mechanisms against stresses of different origins. They emerged from being considered an agricultural oddity only after it was observed that these compounds possess a potential protective function against several human degenerative diseases. This has led to recommending the consumption of food containing high concentrations of flavonoids, which at present, especially as soy isoflavones, are even available as overthecounter nutraceuticals. The increased use of flavonoids has occurred even though their mechanisms are not completely understood, in particular those involving the flavonoid impact on estrogen signals. In fact, most of the human health protective effects of flavonoids are described either as estrogenmimetic, or as antiestrogenic, while others do not involve estrogen signaling at all. Thus, the same molecule is reported as an endocrine disruptor, an estrogen mimetic or as an antioxidant without estrogenic effects. This is due in part to the complexity of the estrogen mechanism, which is conducted by different pathways and involves two different receptor isoforms. These pathways can be modulated by flavonoids and should be considered for a reliable evaluation of flavonoid, both estrogenicity and antiestrogenicity, and for a correct prediction of their effects on human health.
Keywords: 17β-Estradiol, Estrogen Receptor-α, Estrogen Receptor-β, Flavonoids, Gene Transcription, Signal Transduction Cascade
Full Text
The Full Text of this article is available as a PDF (382.6 KB).
References
- Acconcia F., Marino M. Synergism between genomic and non genomic estrogen action mechanisms. IUBMB Life. 2003;55:145–150. doi: 10.1080/1521654031000110172. [DOI] [PubMed] [Google Scholar]
- Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., Trentalance A., Visca P., Marino M. Palmitoylationdependent estrogen receptor α membrane localization:regulation by 17β-estradiol. Molecular Biology of the Cell. 2005;16:231–237. doi: 10.1091/mbc.E04-07-0547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Acconcia F., Totta P., Ogawa S., Cardillo I., Inoue S., Leone S., Trentalance A., Muramatsu M., Marino M. Survival versus apoptotic 17β-estradiol effect: role of ERα and ERβ activated non-genomic signaling. Journal of Cellular Physiology. 2005;203:193–201. doi: 10.1002/jcp.20219. [DOI] [PubMed] [Google Scholar]
- Adachi T., Okuno Y., Takenaka S., Matsuda K., Ohta N., Takashima K., Yamazaki K., Nishimura D., Miyatake K., Mori C., Tsujimoto G. Comprehensive analysis of the effect of phytoestrogen, daidzein, on a testicular cell line, using mRNA and protein expression profile. Food and Chemical Toxicology. 2005;43:529–535. doi: 10.1016/j.fct.2004.12.006. [DOI] [PubMed] [Google Scholar]
- Ashby J., Odum J. Gene expression changes in the immature rat uterus: effects of uterotrophic and sub-uterotrophic doses of bisphenol a. Toxicological Sciences. 2004;82:458–467. doi: 10.1093/toxsci/kfh283. [DOI] [PubMed] [Google Scholar]
- Baker V.A., Hepburn P.A., Kennedy S.J., Jones P.A., Lea L.J., Sumpter J.P., Ashby J. Safety valuation of phytosterol esters. Part 1. Assessment of estrogenicity using a combination of in vivo and in vitro assays. Food and Chemical Toxicology. 1999;37:13–22. doi: 10.1016/S0278-6915(98)00101-X. [DOI] [PubMed] [Google Scholar]
- Barnes S. Soy Isoflavones-Phytoestrogens and What Else? The Journal of Nutrition. 2004;134:1225S–1228S. doi: 10.1093/jn/134.5.1225S. [DOI] [PubMed] [Google Scholar]
- Bayer T., Colnot T., Dekant W. Disposition and biotransformation of the estrogenic isoflavone daidzein in rats. Toxicology Science. 2001;62:205–211. doi: 10.1093/toxsci/62.2.205. [DOI] [PubMed] [Google Scholar]
- Belcher S. M., Zsarnovszky A. Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. The Journal of Pharmacology and Experimental Therapeutics. 2001;299:408–414. [PubMed] [Google Scholar]
- Bennetts H. W., Underwood E. J., Shier F. L. A specific breeding problem of sheep on subterranean clover pasture in western Australia. Australian Veterinary Journal. 1946;22:2–12. doi: 10.1111/j.1751-0813.1946.tb15473.x. [DOI] [PubMed] [Google Scholar]
- Birt D.F., Hendrich S., Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics. 2001;90:157–177. doi: 10.1016/S0163-7258(01)00137-1. [DOI] [PubMed] [Google Scholar]
- Bors W., Michel C., Stettmaier K. Antioxidant effects of flavonoids. Biofactors. 1997;6:399–402. doi: 10.1002/biof.5520060405. [DOI] [PubMed] [Google Scholar]
- Bramlett K.S., Wu Y., Burris T. P. Ligands specify coactivator nuclear receptor (NR) box affinity for estrogen receptor subtypes. Molecular Endocrinology. 2001;15:909–922. doi: 10.1210/me.15.6.909. [DOI] [PubMed] [Google Scholar]
- Brownson D.M., Azios N.G., Fuqua B.K., Dharmawardhane S.F., Mabry T.J. Flavonoid effects relevant to cancer. The Journal of Nutrition. 2002;132:3482S–3489S. doi: 10.1093/jn/132.11.3482S. [DOI] [PubMed] [Google Scholar]
- Brzozowski A.M., Pike A.C., Dauter Z., Hubbard R.E., Bonn T., Engstrom O., Ohman L., Greene G.L., Gustafsson J.-Å., Carlquist M. Molecular basis of agonism and antagonism in the estrogen receptor. Nature. 1997;389:753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
- Bunone G., Briand P.A., Miksicek R.J., Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. The EMBO Journal. 1996;15:2174–2183. [PMC free article] [PubMed] [Google Scholar]
- Cao G., Muccitelli H.U., Sanchez-Moreno C., Prior R.L. Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. The American Journal of Clinical Nutrition. 2001;73:920–926. doi: 10.1093/ajcn/73.5.920. [DOI] [PubMed] [Google Scholar]
- Cassidy A., Hanley B., Lamuela-Raventos R. M. Isoflavones, lignans, and stilbenes: Origins, metabolism, and potential importance to human health. Journal of the Science of Food Agriculture. 2000;80:1044–1062. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1044::AID-JSFA586>3.0.CO;2-N. [DOI] [Google Scholar]
- Castagnetta L., Granata O.M., Cocciadiferro L., Saetta A., Polito L., Bronte G., Rizzo S., Campisi I., Agostana B., Carruba G. Sex steroids, carcinogenesis, and cancer progression. Annals of the New York Academy of Sciences. 2004;1028:233–246. doi: 10.1196/annals.1321.028. [DOI] [PubMed] [Google Scholar]
- Castoria G, Barone M.V., Domenico M., Bilancio A., Ametrano D., Migliaccio A., Auricchio E. Nontranscriptional action of oestradiol and progestin triggers DNA synthesis. The EMBO Journal. 1999;18:2500–2510. doi: 10.1093/emboj/18.9.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castoria G., Migliaccio A., Bilancio A., Domenico M., Falco A., Lombardi M., Fiorentino R., Varricchio L., Barone M.V., Auricchio F. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. The EMBO Journal. 2001;20:6050–6059. doi: 10.1093/emboj/20.21.6050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambliss K.L., Yuhanna I.S., Anderson R.G., Mendelsohn M.E., Shaul P.W. ER? has nongenomic action in caveolae. Molecular Endocrinology. 2002;16:938–946. doi: 10.1210/me.16.5.938. [DOI] [PubMed] [Google Scholar]
- Cheung C. P., Yu S., Wong K. B., Chan L.W., Lai F. M. M., Wang X., Suetsugi M., Chen S., Chan F L. Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues. The Journal of Clinical Endocrinology & Metabolism. 2005;90:1830–1844. doi: 10.1210/jc.2004-1421. [DOI] [PubMed] [Google Scholar]
- Cidlowski J. A. Nuclear receptor superfamily of proteins. 20 years after cloning. Molecular Endocrinology. 2005;19:1401–1666. doi: 10.1210/me.2005-0999. [DOI] [Google Scholar]
- Ciguère V. To ERR in the estrogen pathway. Trends in Endocrinology & Metabolism. 2002;13:220–225. doi: 10.1016/S1043-2760(02)00592-1. [DOI] [PubMed] [Google Scholar]
- Constantinou S., Kiguchi K., Huberman E. Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Research. 1990;50:2618–2624. [PubMed] [Google Scholar]
- Couteau D., McCartney A.L., Gibson G.R., Williamson G., Faulds C.B. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. Journal of Applied Microbiology. 2001;90:873–881. doi: 10.1046/j.1365-2672.2001.01316.x. [DOI] [PubMed] [Google Scholar]
- Coward L., Barnes N.C., Setchell K.D.R., Barnes S. Genistein, daidzein, and their beta-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agricultural and Food Chemistry. 1993;41:1961–1967. doi: 10.1021/jf00035a027. [DOI] [Google Scholar]
- Dan P., Cheung J.C., Scriven D.R., Moore E.D. Epitope-dependent localization of estrogen receptor-α, but not - β, in en face arterial endothelium. American Journal of Physiology. Heart and Circulatory Physiology. 2003;284:H1295–H1306. doi: 10.1152/ajpheart.00781.2002. [DOI] [PubMed] [Google Scholar]
- Dang Z.C., Lowik C. Dose-dependent effects of phytoestrogens on bone. Trends in Endocrinology and Metabolism. 2005;16:207–213. doi: 10.1016/j.tem.2005.05.001. [DOI] [PubMed] [Google Scholar]
- Davis S. R., Murkies A. L., Wilcox G. Phytoestrogens in clinical practice. Integrative Medicine. 1998;1:27–34. doi: 10.1016/S1096-2190(98)00019-5. [DOI] [Google Scholar]
- Kleijn M.J., Schouw Y.T., Wilson P.W., Adlercreutz H., Mazur W., Grobbee D.E., Jacques RE. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study. The Journal of Nutrition. 2001;131:1826–1832. doi: 10.1093/jn/131.6.1826. [DOI] [PubMed] [Google Scholar]
- Delclos K.B., Bucci T.J., Lomax L.G., Latendresse J.R., Warbritton A., Weis C.C., Newbold R.R. Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reproductive Toxicology. 2001;15:647–663. doi: 10.1016/S0890-6238(01)00177-0. [DOI] [PubMed] [Google Scholar]
- Distefano E., Marino M., Gillette J.A., Hanstein B., Pallottini V., Bruning J., Krone W., Trentalance A. Role of tyrosine kinase signaling in estrogen-induced LDL receptor gene expression in HepG2 cells. Biochimica et Biophysica Acta. 2002;1580:145–149. doi: 10.1016/s1388-1981(01)00197-4. [DOI] [PubMed] [Google Scholar]
- Dixon R.A. Phytoestrogens. Annual Review of Plant Biology. 2004;55:225–261. doi: 10.1146/annurev.arplant.55.031903.141729. [DOI] [PubMed] [Google Scholar]
- Doerge D.R., Twaddle N.C., Churchwell M.I., Newbold R.R., Delclos K.B. Lactational transfer of the soy isoflavone, genistein, in Sprague-Dawley rats consuming dietary genistein. Reproductive Toxicology. 2006;21:307–312. doi: 10.1016/j.reprotox.2005.09.007. [DOI] [PubMed] [Google Scholar]
- Enmark E., Pelto-Huikko M., Grandinen K., Lagercrantz S., Lagercrantz J., Fried G., Nordenskjold M., Gustafsson J-Å. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. The Journal of Clinical Endocrinology and Metabolism. 1997;82:4258–4265. doi: 10.1210/jc.82.12.4258. [DOI] [PubMed] [Google Scholar]
- Escande A., Pillon A., Servant N., Cravedi J.P., Larrea F., Muhn P., Nicolas J.C., Cavailles V., Balaguer P. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor α or β. Biochemical Pharmacology. 2006;71:1459–1469. doi: 10.1016/j.bcp.2006.02.002. [DOI] [PubMed] [Google Scholar]
- Farach-Carson M.C., Davis P.J. Steroid hormone interactions with target cells: cross talk between membrane and nuclear pathways. The Journal of Pharmacology and Experimental Therapeutics. 2003;307:839–845. doi: 10.1124/jpet.103.055038. [DOI] [PubMed] [Google Scholar]
- Fitzpatrick L.A. Alternatives to estrogen. The Medical Clinics of North America. 2003;87:1091–1113. doi: 10.1016/S0025-7125(03)00116-0. [DOI] [PubMed] [Google Scholar]
- Flynn K.M., Ferguson S.A., Delclos K.B., Newbold R.R. Effects of genistein exposure on sexually dimorphic behaviors in rats. Toxicology Science. 2000;55:311–319. doi: 10.1093/toxsci/55.2.311. [DOI] [PubMed] [Google Scholar]
- Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:2690–2694. doi: 10.1073/pnas.90.7.2690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamet-Payrastre L., Manenti S., Gratacap M.P., Tulliez J., Chap H., Payrastre B. Flavonoids and the inhibition of PKC and PI3-kinase. General Pharmacology. 1999;32:279–286. doi: 10.1016/S0306-3623(98)00220-1. [DOI] [PubMed] [Google Scholar]
- Garrels J.I. The QUEST system for quantitative analysis of two-dimensional gels. Journal of Biological Chemistry. 1989;264:5269–5282. [PubMed] [Google Scholar]
- Glass C.K., Rosenfeld M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes & Development. 2000;14:121–141. [PubMed] [Google Scholar]
- Gonthier M.P., Verny M.A., Besson C., Rémésy C., Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. The Journal of Nutrition. 2003;133:1853–1859. doi: 10.1093/jn/133.6.1853. [DOI] [PubMed] [Google Scholar]
- Graefe E.U., Wittig J., Mueller S., Riethling A.K., Uehleke B., Drewelow B., Pforte H., Jacobasch G., Derendorf H., Veit M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology. 2001;41:492–499. doi: 10.1177/00912700122010366. [DOI] [PubMed] [Google Scholar]
- Green S., Walter P., Kumar V., Krust A., Bornert J.M., Argos P., Chambon P. Human estrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986;320:134–139. doi: 10.1038/320134a0. [DOI] [PubMed] [Google Scholar]
- Guo T.L., Germolec D.R., Musgrove D.L., Delclos K.B., Newbold R.R., Weis C.C., White K.L. Myelotoxicity in genistein-, nonylphenol-, methoxychlor-, vinclozolinor ethinyl estradiol-exposed F1 generations of Sprague-Dawley rats following developmental and adult exposures. Toxicology. 2005;211:207–219. doi: 10.1016/j.tox.2005.03.008. [DOI] [PubMed] [Google Scholar]
- Heinonen M. Anthocyanins as dietary antioxidants. In: Voutilainen S, Salonen J.T., editors. Third international conference on natural antioxidants and anticarcinogens in food, health, and disease (NAHD) Helsinki, Finland. Helsinki: Kuopion Yliopisto; 2001. pp. 25–25. [Google Scholar]
- Hendrich S., Wang G. J., Lin H. K., Xu X., Tew B. Y., Wang H. J., Murphy P. A. Isoflavones metabolism and bioavailability. In: Pappas A., editor. Antioxidant Status, Diet, Nutrition and Health. Boca Raton: CRC Press LLC; 1998. pp. 211–230. [Google Scholar]
- Hertog M.G, Feskens E.J., Kromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet. 1997;349:699–699. doi: 10.1016/S0140-6736(05)60135-3. [DOI] [PubMed] [Google Scholar]
- Hertog M.G.L., Hollman P.C.H., Katan M.B., Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutrition and Cancer. 1993;20:21–29. doi: 10.1080/01635589309514267. [DOI] [PubMed] [Google Scholar]
- Heruth D. P., Wetmore L. A., Leyva A., Rothberg P. G. Influence of protein tyrosine phosphorylation on the expression of the c-myc oncogene in cancer of the large bowel. Journal of Cellular Biochemistry. 1995;58:83–94. doi: 10.1002/jcb.240580111. [DOI] [PubMed] [Google Scholar]
- Herynk M.H., Fuqua S.A. Estrogen receptor mutations in human disease. Endocrine Reviews. 2004;25:869–898. doi: 10.1210/er.2003-0010. [DOI] [PubMed] [Google Scholar]
- Hirata S., Shoda T., Kato J., Hoshi K. Isoform/ variant mRNAs for sex steroid hormone receptors in humans. Trends in Endocrinology and Metabolism. 2003;14:124–129. doi: 10.1016/S1043-2760(03)00028-6. [DOI] [PubMed] [Google Scholar]
- Hollman P.C.H., Katan M.B. Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology. 1999;37:937–942. doi: 10.1016/S0278-6915(99)00079-4. [DOI] [PubMed] [Google Scholar]
- Hollman P.C.H., Hertog M.G., Katan M.B. Role of dietary flavonoids in protection against cancer and coronary heart disease. Biochemical Society Transactions. 1996;24:785–789. doi: 10.1042/bst0240785. [DOI] [PubMed] [Google Scholar]
- Hollman P.C.H., Trijp J.M.P., Buysman M.N.C.P., Gaag M.S., Mengelers M.J., Vries J.H., Katan M.B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Letters. 1997;418:152–156. doi: 10.1016/S0014-5793(97)01367-7. [DOI] [PubMed] [Google Scholar]
- Inoue A., Yoshida N., Omoto Y, Oguchi S., Yamori T., Kiyama R., Hayashi S. Development of cDNA microarray for expression profiling of estrogen-responsive genes. Journal of Molecular Endocrinology. 2002;29:175–192. doi: 10.1677/jme.0.0290175. [DOI] [PubMed] [Google Scholar]
- Jacobs M.N., Lewis D.F. Steroid hormone receptors and dietary ligands: a selected review. Proceedings of the Nutrition Society. 2002;61:105–122. doi: 10.1079/pns2001140. [DOI] [PubMed] [Google Scholar]
- Jordan V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. Journal of Medicinal Chemistry. 2003;46:883–908. doi: 10.1021/jm020449y. [DOI] [PubMed] [Google Scholar]
- Justesen U., Knuthsen P., Leth T. Determination of plant polyphenols in Danish foodstuffs by HPLC-UV and LC-MS detection. Cancer Letters. 1997;114:165–167. doi: 10.1016/S0304-3835(97)04651-X. [DOI] [PubMed] [Google Scholar]
- Keinan-Boker L., Schouw Y.T., Grobbee D.E., Peeters P.H. Dietary phytoestrogens and breast cancer risk. The American Journal of Clinical Nutrition. 2004;79:282–288. doi: 10.1093/ajcn/79.2.282. [DOI] [PubMed] [Google Scholar]
- Kelly G. E., Nelson C., Waring M. A., Joannou G. E., Reeder A. Y. Metabolites of dietary (soya) isoflavones in human urine. Clinica ChimicaActa. 1993;223:9–22. doi: 10.1016/0009-8981(93)90058-C. [DOI] [PubMed] [Google Scholar]
- King R. A., Bursill D. B. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. The American Journal of Clinical Nutrition. 1998;67:867–872. doi: 10.1093/ajcn/67.5.867. [DOI] [PubMed] [Google Scholar]
- Kirk E.A., Sutherland P., Wang S.A., Chait A., LeBoeuf R.C. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. The Journal of Nutrition. 1998;128:954–959. doi: 10.1093/jn/128.6.954. [DOI] [PubMed] [Google Scholar]
- Klinge C.M., Blankenship K.A., Risinger K.E., Bhatnagar S., Noisin E.L., Sumanasekera W.K., Zhao L., Brey D.M., Keynton R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. The Journal of Biological Chemistry. 2005;280:7460–7468. doi: 10.1074/jbc.M411565200. [DOI] [PubMed] [Google Scholar]
- Kousteni S., Chen J.R., Bellido T., Han L., Ali A.A., O’Brien C.A., Plotkin L., Fu Q., Mancino A.T., Wen Y., Vertino A.M., Powers C.C., Stewart S.A., Ebert R., Parfitt A.M., Weinstein R.S., Jilka R.L., Manolagas S.C. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science. 2002;298:843–846. doi: 10.1126/science.1074935. [DOI] [PubMed] [Google Scholar]
- Kraus W.L., Wong J. Nuclear receptor-dependent transcription with chromatin. Is it all about enzymes? European Journal of Biochemistry. 2002;269:2275–2283. doi: 10.1046/j.1432-1033.2002.02889.x. [DOI] [PubMed] [Google Scholar]
- Kris-Etherton P.M., Hecker K.D., Bonanome A., Coval S.M., Binkoski A.E., Hilpert K.F., Griel A.E., Etherton T.D. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine. 2002;113(9B):71S–88S. doi: 10.1016/S0002-9343(01)00995-0. [DOI] [PubMed] [Google Scholar]
- Kuhnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Review of Nutrition and Dietetics. 1976;24:117–191. [PubMed] [Google Scholar]
- Kuiper G.G.J.M., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J.-Å. Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuiper G.G.J.M., Lemmen J.G., Carlsson B., Corton J.C., Safe S.H., Saag P.T., Burg B., Gustafsson J.-Å. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 1998;139:4252–4263. doi: 10.1210/en.139.10.4252. [DOI] [PubMed] [Google Scholar]
- Kumar V., Green S., Stack G., Berry M., Jin J.R., Chambon P. Functional domains of the human estrogen receptor. Cell. 1987;51:941–951. doi: 10.1016/0092-8674(87)90581-2. [DOI] [PubMed] [Google Scholar]
- Kumpulainen J.T. Intake of flavonoids, phenolic acids and lignans in various populations. In: Voutilainen S., Salonen J.T., editors. Third international conference on natural antioxidants and anticarcinogens in food, health, and disease (NAHD) Helsinki: Kuopion Yliopisto; 2001. pp. 24–24. [Google Scholar]
- Kuo M.-L., Lin J.-K., Huang T.-S., Yang N.-C. Reversion of the transformed phenotypes of v-H-ras NIH3T3 cells by flavonoids through attenuating the content of phosphotyrosine. Cancer Letters. 1994;87:91–97. doi: 10.1016/0304-3835(94)90414-6. [DOI] [PubMed] [Google Scholar]
- Leers J., Treuter E., Gustafsson J.-Å. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Molecular and Cellular Biology. 1998;18:6001–6013. doi: 10.1128/mcb.18.10.6001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehmann L., Esch H.L., Wagner J., Rohnstock L., Metzler M. Estrogenic and genotoxic potential of equol and two hydroxylated metabolites of daidzein in cultured human Ishikawa cells. Toxicology Letters. 2005;158:72–86. doi: 10.1016/j.toxlet.2005.02.011. [DOI] [PubMed] [Google Scholar]
- Levin E.R. Integration of the extranuclear and nuclear actions of estrogen. Molecular Endocrinology. 2005;19:1951–1959. doi: 10.1210/me.2004-0390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limer J.L., Speirs V. Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Research. 2004;6:119–127. doi: 10.1186/bcr781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu M. M., Albanese C., Anderson C. M., Hilty K., Webb P., Uht R. M., Price R. H., Pestell R. G., Kushner P. J. Opposing action of estrogen receptors α and β on cyclin D1 gene expression. The Journal of Biological Chemistry. 2002;277:24353–24360. doi: 10.1074/jbc.M201829200. [DOI] [PubMed] [Google Scholar]
- Lobenhofer E.K., Huper G., Iglehart J.D., Marks J.R. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. Cell Growth and Differentiation. 2000;11:99–110. [PubMed] [Google Scholar]
- Losel R.M., Falkenstein E., Feuring M., Schultz A., Tillmann H.C., Rossol-Haseroth K., Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiological Reviews. 2003;83:965–1016. doi: 10.1152/physrev.00003.2003. [DOI] [PubMed] [Google Scholar]
- Lu L. J., Lin S. N., Grady J. J., Nagamani M., Anderson K. E. Altered kinetics and extent of urinary daidzein and genistein excretion in women during chronic soya exposure. Nutrition and Cancer. 1997;26:289–302. doi: 10.1080/01635589609514485. [DOI] [PubMed] [Google Scholar]
- Maggi A., Ciana P. Reporter mice and drug discovery and development. Nature Reviews. Drug Discovery. 2005;4:249–255. doi: 10.1038/nrd1661. [DOI] [PubMed] [Google Scholar]
- Maggi A., Ottobrini L., Biserni A., Lucignani G., Ciana P. Reporter mice: a new way to look at drug action. Trends in Pharmacological Science. 2004;25:337–342. doi: 10.1016/j.tips.2004.04.007. [DOI] [PubMed] [Google Scholar]
- Maggiolini M., Vivacqua A., Fasanella G., Recchia A.G., Sisci D., Pezzi V., Montanaro D., Musti A.M., Picard D., Andò S. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. The Journal of Biological Chemistry. 2004;279:27008–27016. doi: 10.1074/jbc.M403588200. [DOI] [PubMed] [Google Scholar]
- Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. [DOI] [PubMed] [Google Scholar]
- Manas E.S., Xu Z.B., Unwalla R.J., Somers W.S. Understanding the selectivity of genistein for human estrogen receptor-β using X-ray crystallography and computational methods. Structure. 2004;12:2197–2207. doi: 10.1016/j.str.2004.09.015. [DOI] [PubMed] [Google Scholar]
- Manavathi B., Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: Two sides of the coin. Journal of Cellular Physiology. 2005;207:594–604. doi: 10.1002/jcp.20551. [DOI] [PubMed] [Google Scholar]
- Manolagas S.C., Kousteni S., Jilka R.L. Sex steroids and bone. Recent Progress in Hormone Research. 2002;57:385–409. doi: 10.1210/rp.57.1.385. [DOI] [PubMed] [Google Scholar]
- Marino M., Acconcia F., Ascenzi P. Estrogen receptor signalling: bases for drug actions. Current Drug Targets. Immune, Endocrine and Metabolic Disorders. 2005;5:305–314. doi: 10.2174/1568008054863763. [DOI] [PubMed] [Google Scholar]
- Marino M., Acconcia F., Trentalance A. Biphasic estradiol-induced AKT phosphorylation is modulated by PTEN via MAP kinase in HepG2 cells. Molecular Biology of the Cell. 2003;14:2583–2591. doi: 10.1091/mbc.E02-09-0621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marino M., Acconcia F., Bresciani F., Weisz A., Trentalance A. Distinct nongenomic signal transduction pathways controlled by 17β-estradiol regulate DNA synthesis and cyclin D1 gene transcription in HepG2 cells. Molecular Biology of the Cell. 2002;13:3720–3729. doi: 10.1091/mbc.E02-03-0153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marino M., Distefano E., Pallottini V., Caporali S., Ceracchi G., Trentalance A. beta-estradiol stimulation of DNA synthesis requires different PKC isoforms in HepG2 and MCF7 cells. Journal of Cellular Physiology. 2001;188:170–177. doi: 10.1002/jcp.1105. [DOI] [PubMed] [Google Scholar]
- Marino M., Pallottini V., Trentalance A. Estrogens cause rapid activation of IP3-PKC-α signal transduction pathway in HEPG2 cells. Biochemical and Biophysical Research Communications. 1998;245:254–258. doi: 10.1006/bbrc.1998.8413. [DOI] [PubMed] [Google Scholar]
- Martin M.E., Haourigui M., Pelissero C., Benassayag C., Nunez E.A. Interactions between phytoestrogens and human sex steroid binding protein. Life Science. 1996;58:429–436. doi: 10.1016/0024-3205(95)02308-9. [DOI] [PubMed] [Google Scholar]
- Maruyama S., Fujimoto N., Asano K., Ito A. Suppression by estrogen receptor β of AP-1 mediated transactivation through estrogen receptor α. The journal of steroid biochemistry and molecular biology. 2001;78:177–184. doi: 10.1016/S0960-0760(01)00083-8. [DOI] [PubMed] [Google Scholar]
- Matthews J., Gustafsson J.-Å. Estrogen signaling: a subtle balance between ERα and ERβ. Molecular Interventions. 2003;3:281–292. doi: 10.1124/mi.3.5.281. [DOI] [PubMed] [Google Scholar]
- McDonnell D.P. Mining the complexities of the estrogen signaling pathways for novel therapeutics. Endocrinology. 2003;144:4237–4240. doi: 10.1210/en.2003-0900. [DOI] [PubMed] [Google Scholar]
- McDonnell D.P., Clemm D.L., Hermann T., Goldman M.E., Pike J.W. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Molecular Endocrinology. 1995;9:659–669. doi: 10.1210/me.9.6.659. [DOI] [PubMed] [Google Scholar]
- McKenna N.J., O’Malley B.W. An issue of tissues: divining the split personalities of selective estrogen receptor modulators. Nature Medicine. 2000;6:960–962. doi: 10.1038/79637. [DOI] [PubMed] [Google Scholar]
- Middleton E., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews. 2000;52:673–751. [PubMed] [Google Scholar]
- Mikkola T.S., Clarkson T.B. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovascular Research. 2002;53:605–619. doi: 10.1016/S0008-6363(01)00466-7. [DOI] [PubMed] [Google Scholar]
- Monroe D.G., Secreto F.J., Subramaniam M., Getz B.J., Khosla S., Spelsberg T.C. Estrogen receptor α and β heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. Molecular Endocrinology. 2005;19:1555–1568. doi: 10.1210/me.2004-0381. [DOI] [PubMed] [Google Scholar]
- Mosselman S., Polman J., Dijkema R. ERβ: identification and characterization of a novel human estrogen receptor. FEBS Letters. 1996;392:49–53. doi: 10.1016/0014-5793(96)00782-X. [DOI] [PubMed] [Google Scholar]
- Mueller S. O. Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens. Journal of Chromatography. 2002;B777:155–165. doi: 10.1016/s1570-0232(02)00282-9. [DOI] [PubMed] [Google Scholar]
- Mueller S. O., Simon S., Chae K., Metzler M., Korach K. S. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor α (ERα) and ERβ in human cells. Toxicological Science. 2004;80:14–25. doi: 10.1093/toxsci/kfh147. [DOI] [PubMed] [Google Scholar]
- Naciff J. M., Jump M. L., Torontali S. M., Carr G. J., Tiesman J. P., Overmann G. J., Daston G. P. Gene expression profile induced by 17α-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicological Science. 2002;68:184–199. doi: 10.1093/toxsci/68.1.184. [DOI] [PubMed] [Google Scholar]
- Naciff J. M., Overmann G. J., Torontali S. M., Carr G. J., Tiesman J. P., Daston G. P. Impact of the phytoestrogen content of laboratory animal feed on the geneexpression profile of the reproductive system in the immature female rat. Environmental Health Perspectives. 2004;112:1519–1526. doi: 10.1289/ehp.6848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson S., Makela S., Treuter E., Tujague M., Thomsen J., Andersson G., Enmark E., Pettersson K., Warner M., Gustafsson J.-Å. Mechanisms of estrogen action. Physiological Reviews. 2001;81:1535–1565. doi: 10.1152/physrev.2001.81.4.1535. [DOI] [PubMed] [Google Scholar]
- Norman A. W., Mizwicki M. T., Norman D. P. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nature Reviews. Drug Discovery. 2004;3:27–41. doi: 10.1038/nrd1283. [DOI] [PubMed] [Google Scholar]
- The validation of test methods considered for adoption as OECD test guidelines. Paris: OECD; 1998. [Google Scholar]
- Ogawa S., Inoue S., Watanabe T., Hiroi H., Orimo A., Hosoi T., Ouchi Y., Muramatsu M. The complete primary structure of human estrogen receptor β (hERβ) and its heterodimerization with ERα in vivo and in vitro. Biochemical and Biophysic Research Communications. 1998;243:122–126. doi: 10.1006/bbrc.1997.7893. [DOI] [PubMed] [Google Scholar]
- Oh H.Y., Kim S.S., Chung H.Y., Yoon S. Isoflavone supplements exert hormonal and antioxidant effects in postmenopausal Korean women with diabetic retinopathy. Journal of Medicinal Food. 2005;8:1–7. doi: 10.1089/jmf.2005.8.1. [DOI] [PubMed] [Google Scholar]
- Owens W., Ashby J., Odum J., Onyon L. The OECD program to validate the rat uterotrophic bioassay. Phase 2: dietary phytoestrogen analyses. Environmental Health Perspectives. 2003;111:1559–1567. doi: 10.1289/ehp.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paech K., Webb P., Kuiper G.G.J.M., Nilsson S., Gustafsson J.-Å., Kushner P.J., Scanlan T.S. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science. 1997;277:1508–1510. doi: 10.1126/science.277.5331.1508. [DOI] [PubMed] [Google Scholar]
- Pedram A., Razandi M., Aitkenhead M., Hughes C.C., Levin E.R. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. The Journal of Biological Chemistry. 2002;277:50768–50775. doi: 10.1074/jbc.M210106200. [DOI] [PubMed] [Google Scholar]
- Pennisi E. A low number wins the GeneSweep pool. Science. 2003;300:1484–1484. doi: 10.1126/science.300.5625.1484b. [DOI] [PubMed] [Google Scholar]
- Peters G.A., Khan S.A. Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140. Molecular Endocrinology. 1999;13:286–296. doi: 10.1210/me.13.2.286. [DOI] [PubMed] [Google Scholar]
- Pietta P.G. Flavonoids as antioxidants. Journal of Natural Products. 2000;63:1035–1042. doi: 10.1021/np9904509. [DOI] [PubMed] [Google Scholar]
- Rachez C., Freedman L.P. Mediator complexes and transcription. Current Opinion in Cell Biology. 2001;13:274–280. doi: 10.1016/S0955-0674(00)00209-X. [DOI] [PubMed] [Google Scholar]
- Ramanathan L., Gray W.G. Identification and characterization of a phytoestrogen-specific gene from the MCF-7 human breast cancer cell. Toxicology and Applied Pharmacology. 2003;191:107–117. doi: 10.1016/S0041-008X(03)00221-7. [DOI] [PubMed] [Google Scholar]
- Ricketts M.-L., Moore D.D., Banz W.J., Mezei O., Shay N.F. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. Journal of Nutritional Biochemistry. 2005;16:321–330. doi: 10.1016/j.jnutbio.2004.11.008. [DOI] [PubMed] [Google Scholar]
- Rimbach G., Pascual T.-S., Ewins B.A., Matsugo S., Uchida Y., Minihane A.M., Turner R., Vafei A.K., Weinberg P.D. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 2003;33:913–25. doi: 10.1080/0049825031000150444. [DOI] [PubMed] [Google Scholar]
- Routledge E.J., White R., Parker M.G., Sumpter J.P. Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) α and ERβ? The Journal of Biological Chemistry. 2000;275:35986–35993. doi: 10.1074/jbc.M006777200. [DOI] [PubMed] [Google Scholar]
- Ruehlmann D.O., Steinert J.R., Valverde M.A., Jacob R., Mann G.E. Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+ channels in smooth muscle cells. The FASEB Journal. 1998;12:613–619. doi: 10.1096/fasebj.12.7.613. [DOI] [PubMed] [Google Scholar]
- Sampson L., Rimm E., Hollman P.C., Vries J.H., Katan M.B. Flavonol and flavone intakes in US health professionals. Journal of the American Dietetic Association. 2002;102:1414–1420. doi: 10.1016/S0002-8223(02)90314-7. [DOI] [PubMed] [Google Scholar]
- Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. The Journal of Nutrition. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. [DOI] [PubMed] [Google Scholar]
- Schaefer O., Humpel M., Fritzemeier K.H., Bohlmann R., Schleuning W.D. 8-Prenylnaringenin is a potent ER? selective phytoestrogen present in hops and beer. Journal of Steroid Biochemistry and Molecular Biology. 2003;84:359–360. doi: 10.1016/S0960-0760(03)00050-5. [DOI] [PubMed] [Google Scholar]
- Selvaraj V., Zakroczymski M.A., Naaz A., Mukai M., Ju Y.H., Doerge D.R., Katzenellenbogen J.A., Helferich W.G., Cooke P.S. Estrogenicity of the isoflavone metabolite equol on reproductive and non-reproductive organs in mice. Biology of Reproduction. 2004;71:966–972. doi: 10.1095/biolreprod.104.029512. [DOI] [PubMed] [Google Scholar]
- Setchell K.D., Brown N.M., Lydeking-Olsen E. The clinical importance of the metabolite equol-A clue to the effectiveness of soy and its isoflavones. The Journal of Nutrition. 2002;132:3577–3584. doi: 10.1093/jn/132.12.3577. [DOI] [PubMed] [Google Scholar]
- Shay N.F., Banz W.J. Regulation of gene transcription by botanicals: novel regulatory mechanisms. Annual Review of Nutrition. 2005;25:297–315. doi: 10.1146/annurev.nutr.25.050304.092639. [DOI] [PubMed] [Google Scholar]
- Shutt D. A., Cox R. I. Steroid and phyto-estrogen binding to sheep uterine receptors in vitro. The Journal of Endocrinology. 1972;52:299–310. doi: 10.1677/joe.0.0520299. [DOI] [PubMed] [Google Scholar]
- Simoncini T., Hafezi-Moghadam A., Brazil D.P., Ley K., Chin W.W., Liso J.K. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000;407:538–451. doi: 10.1038/35035131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C.L., O’Malley B.W. Coregulator function: a key to understanding tissue specificity of elective receptor modulators. Endocrine Reviews. 2004;25:45–71. doi: 10.1210/er.2003-0023. [DOI] [PubMed] [Google Scholar]
- Song R.X., Zhang Z., Santen R.J. Estrogen rapid action via protein complex formation involving ERα and Src. Trends in Endocrinology and Metababolism. 2005;16:347–353. doi: 10.1016/j.tem.2005.06.010. [DOI] [PubMed] [Google Scholar]
- Spencer J.P., Schroeter H., Crossthwaithe A.J., Kuhnle G., Williams R.J., Rice-Evans C. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radical Biology & Medicine. 2001;31:1139–1146. doi: 10.1016/S0891-5849(01)00704-3. [DOI] [PubMed] [Google Scholar]
- Stevens J.F., Page J. E. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 2004;65:1317–1330. doi: 10.1016/j.phytochem.2004.04.025. [DOI] [PubMed] [Google Scholar]
- Suetsugi M., Su L., Karlsberg K., Yuan Y.C., Chen S. Flavone and isoflavone phytoestrogens are agonists of estrogenrelated receptors. Molecular Cancer Research. 2003;1:981–991. [PubMed] [Google Scholar]
- Szego C. M., Davis J. S. Adenosine 3′,5′-monophosphate in rat uterus: acute elevation by estrogen. Proceedings of the National Academy of Sciences of the United States of America. 1967;58:1711–1718. doi: 10.1073/pnas.58.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaka S., Aita Y., Inoue A., Hayashi S., Nishigaki M., Aoyagi K., Sasaki H., Wada-Kiyama Y., Sakuma Y., Akaba S., Tanaka J., Sone H., Yonemoto J., Tanji M., Kiyama R. Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals. Environmental Health Perspectives. 2004;112:773–781. doi: 10.1289/ehp.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Totta P., Acconcia F., Leone S., Cardillo I., Marino M. Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor α and β signalling. IUBMB Life. 2004;56:491–499. doi: 10.1080/15216540400010792. [DOI] [PubMed] [Google Scholar]
- Totta P., Acconcia F., Virgili F., Cassidy A., Weinberg P.D., Rimbach G., Marino M. Daidzein-sulfate metabolites affect transcriptional and antiproliferative activities of estrogen receptor-? in cultured human cancer cells. The Journal of Nutrition. 2005;135:2687–2693. doi: 10.1093/jn/135.11.2687. [DOI] [PubMed] [Google Scholar]
- Tremblay G.B., Tremblay A., Labrie F., Giguere V. Dominant activity of activation function 1 (AF-1) and differential stoichiometric requirements for AF-1 and -2 in the estrogen receptor alpha-beta heterodimeric complex. Molecular and Cellular Biology. 1999;19:1919–1927. doi: 10.1128/mcb.19.3.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner R., Baron T., Wolffram S., Minihane A.M., Cassidy A., Rimbach G., Weinberg P.D. Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radical Research. 2004;38:209–216. doi: 10.1080/10715760310001641854. [DOI] [PubMed] [Google Scholar]
- Erp-Baart M.A., Brants H.A., Kiely M., Mulligan A., Turrini A., Sermoneta C., Kilkkinen A., Valsta L.M. Isoflavone intake in four different European countries: the VENUS approach. British Journal of Nutrition. 2003;89:S25–S30. doi: 10.1079/BJN2002793. [DOI] [PubMed] [Google Scholar]
- Virgili F., Acconcia F., Ambra R., Rinna A., Totta P., Marino M. Nutritional flavonoids modulate estrogen receptor α signaling. IUBMB Life. 2004;56:145–151. doi: 10.1080/15216540410001685083. [DOI] [PubMed] [Google Scholar]
- Weigel N.L., Zhang Y. Ligand-independent activation of steroid hormone receptors. Journal of Molecular Medicine. 1998;76:469–479. doi: 10.1007/s001090050241. [DOI] [PubMed] [Google Scholar]
- Weihua Z., Andersson S., Cheng G., Simpson E.R., Warner M., Gustafsson J.-Å. Update on estrogen signaling. FEBS Letters. 2003;46:17–24. doi: 10.1016/S0014-5793(03)00436-8. [DOI] [PubMed] [Google Scholar]
- Wijayaratne A.L., Nagel S.C., Paige L.A., Christensen D.J., Norris J.D., Fowlkes D.M., McDonnell D.P. Comparative analyses of mechanistic differences among antiestrogens. Endocrinology. 1999;140:5828–5840. doi: 10.1210/en.140.12.5828. [DOI] [PubMed] [Google Scholar]
- Wrenn C.K., Katzenellenbogen B.S. Structure-function analysis of the hormone binding domain of the human estrogen receptor by region-specific mutagenesis and phenotypic screening in yeast. The Journal of Biological Chemistry. 1993;268:24089–24098. [PubMed] [Google Scholar]
- Xu X., Harris K. S., Wang H.-J., Murphy P. A., Hendrich S. Bioavailability of soybean isoflavones depends upon gut microflora in women. The Journal of Nutrition. 1995;125:2307–2315. doi: 10.1093/jn/125.9.2307. [DOI] [PubMed] [Google Scholar]
- Xu X., Wang H.-J., Murphy P. A., Cook L., Hendrich S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. The Journal of Nutrition. 1994;124:825–832. doi: 10.1093/jn/124.6.825. [DOI] [PubMed] [Google Scholar]
- Yager J.D., Davidson N.E. Estrogen carcinogenesis in breast cancer. The New England Journal of Medicine. 2006;354:270–282. doi: 10.1056/NEJMra050776. [DOI] [PubMed] [Google Scholar]
- Zhang Q.X., Hilsenbeck S.G., Fuqua S.A., Borg A. Multiple splicing variants of the estrogen receptor are present in individual human breast tumors. Journal of Steroid and Biochemical Molecular Biology. 1996;59:251–260. doi: 10.1016/S0960-0760(96)00120-3. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Wang G.J., Song T.T., Murphy P.A., Hendrich S. Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. The Journal of Nutrition. 1999;129:957–962. doi: 10.1093/jn/129.5.957. [DOI] [PubMed] [Google Scholar]