Skip to main content
Genes & Nutrition logoLink to Genes & Nutrition
. 2006 Sep;1(3-4):143–158. doi: 10.1007/BF02829964

Tools to evaluate estrogenic potency of dietary phytoestrogens:A consensus paper from the EU Thematic Network “Phytohealth” (QLKI-2002-2453)

N M Saarinen 1,, C Bingham 2, S Lorenzetti 3, A Mortensen 4, S Mäkelä 1, P Penttinen 1, I K SØrensen 4, L M Valsta 2, F Virgili 3, G Vollmer 5, A Wärri 1, O Zierau 5
PMCID: PMC3454835  PMID: 18850210

Abstract

Phytoestrogens are naturally occurring plantderived polyphenols with estrogenic potency. They are ubiquitous in diet and therefore, generally consumed. Among Europeans, the diet is rich in multiple putative phytoestrogens including flavonoids, tannins, stilbenoids, and lignans. These compounds have been suggested to provide beneficial effects on multiple menopause-related conditions as well as on development of hormone-dependent cancers, which has increased the interest in products and foods with high phytoestrogen content. However, phytoestrogens may as well have adverse estrogenicity related effects similar to any estrogen. Therefore, the assessment of estrogenic potency of dietary compounds is of critical importance. Due to the complex nature of estrogenicity, no single comprehensive test approach is available. Instead, several in vitro and in vivo assays are applied to evaluate estrogenic potency. In vitro estrogen receptor (ER) binding assays provide information on the ability of the compound to I) interact with ERs, II) bind to estrogen responsive element on promoter of the target gene as ligand-ER complex, and III) interact between the co-activator and ERs in ligand-dependent manner. In addition, transactivation assays in cells screen for ligand-induced ERmediated gene activation. Biochemical in vitro analysis can be used to test for possible effects on protein activities and E-screen assays to measure (anti)proliferative response in estrogen responsive cells. However, for assessment of estrogenicity in organs and tissues, in vivo approaches are essential. In females, the uterotrophic assay is applicable for testing ERa agonistic and antagonistic dietary compounds in immature or adult ovariectomized animals. In addition, mammary gland targeted estrogenicity can be detected as stimulated ductal elongation and altered formation of terminal end buds in immature or peripubertal animals. In males, Hershberger assay in peri-pubertal castrated rats can be used to detect (anti)androgenic/ (anti)estrogenic responses in accessory sex glands and other hormone regulated tissues. In addition to these short-term assays, sub-acute and chronic reproductive toxicity assays as well as two-generation studies can be applied for phytoestrogens to confirm their safety in long-term use. For reliable assessment of estrogenicity of dietary phytoestrogens in vivo, special emphasis should be focused on selection of the basal diet, route and doses of administration, and possible metabolic differences between the species used and humans. In conclusion, further development and standardization of the estrogenicity test methods are needed for better interpretation of both the potential benefits and risks of increasing consumption of phytoestrogens from diets and supplements.

Key words: Diet, Estrogenicity, Isoflavones, Lignans, Phytoestrogens

Full Text

The Full Text of this article is available as a PDF (259.0 KB).

References

  1. Adlercreutz H., Heinonen S.M., Penalvo-Garcia J. Phytoestrogens, cancer and coronary heart disease. Biofactors. 2004;22:229–236. doi: 10.1002/biof.5520220146. [DOI] [PubMed] [Google Scholar]
  2. Ariazi E.A., Jordan V.C. Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Current Topics in Medicinal Chemistry. 2006;6:181–193. doi: 10.2174/1568026610606030203. [DOI] [PubMed] [Google Scholar]
  3. Ashby J. Increasing the sensitivity of the rodent uterotrophic assay to estrogens with particular reference to bisphenolA. Environmental Health Perspectives. 2001;109:1091–1094. doi: 10.1289/ehp.011091091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashby J., Lefevre P.A., Tinwell H., Odum J., Owebs W. Testosterone-stimulated weanlings as an alternative to castrated male rats in the Hershberger ani- androgenic assay. Regulatory Toxicology and Pharmacology. 2004;39:229–238. doi: 10.1016/j.yrtph.2004.02.001. [DOI] [PubMed] [Google Scholar]
  5. Bolger R., Wiese T.E., Ervin K., Nestich S., Checovich W. Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environmental Health Perspectives. 1998;106:551–557. doi: 10.1289/ehp.98106551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer M., Poujol N., Margeat E., Royer C.A. Quantitative characterization of the interaction between purified human estrogen receptor alpha and DNA using fluorescence anisotropy. Nucleic Acids Research. 2000;28:2494–2502. doi: 10.1093/nar/28.13.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branca F, Lorenzetti S. Health effects of phytoestrogens. Forum Nutrition. 2005;57:100–111. doi: 10.1159/000083773. [DOI] [PubMed] [Google Scholar]
  8. Brown N.M., Setchell K.D. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Laboratory Investigation. 2001;81:735–747. doi: 10.1038/labinvest.3780282. [DOI] [PubMed] [Google Scholar]
  9. Cos P., Bruyne T., Apers S., Vanden Berghe D., Pieters L., Vlietinck A. Phytoestrogens: recent developments. Planta Medica. 2003;69:589–599. doi: 10.1055/s-2003-41122. [DOI] [PubMed] [Google Scholar]
  10. COT Report (2003). Phytoestrogens and Health. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment; Working Group on Phytoestrogens and Health; Chairmen: Hughes I and Woods HF. The Food Standards Agency. http://www.food.gov.uk/science/ouradvisors/toxicity/COTwg/ wg_phyto.
  11. Cotroneo M.S., Wang J., Eltoum I.-E.A., Lamartiniere C.A. Sex steroid receptor regulation by genistein in the prepubertal rat uterus. Molecular and Cellular Endocrinology. 2001;173:135–145. doi: 10.1016/s0303-7207(00)00405-6. [DOI] [PubMed] [Google Scholar]
  12. Couse J.F., Korach K.S. Reproductive phenotypes in the estrogen receptor-alpha knockout mouse. Annual Endocrinology (Paris) 1999;60:143–148. [PubMed] [Google Scholar]
  13. Couse J.F., Yates M.M., Deroo B.J., Korach K.S. Estrogen receptor beta augments gonadotropin-induced granulose cell differentiation and pre-ovulatory response to gonadotropins. Endocrinology. 2005;146:3247–3262. doi: 10.1210/en.2005-0213. [DOI] [PubMed] [Google Scholar]
  14. Couse J.F., Curtis H.S., Korach K.S. Receptor null mice reveal contrasting roles for estrogen receptor α and β in reproductive tissues. Journal of Steroid Biochemistry and Molecular Biology. 2000;74:287–296. doi: 10.1016/s0960-0760(00)00105-9. [DOI] [PubMed] [Google Scholar]
  15. Curtis S.W., Korach K.S. Uterine estrogen receptor interaction with estrogen-responsive DNA sequences in vitro: effects of ligand binding on receptor-DNA complexes. Molecular Endocrinology. 1990;4:276–286. doi: 10.1210/mend-4-2-276. [DOI] [PubMed] [Google Scholar]
  16. Dana S.L., Hoener P.A., Wheeler D.A., Lawrence C.B., McDonnell D.P. Novel estrogen response elements identified by genetic selection in yeast are differentially responsive to estrogens and antiestrogens in mammalian cells. Molecular Endocrinology. 1994;8:1193–1207. doi: 10.1210/mend.8.9.7838152. [DOI] [PubMed] [Google Scholar]
  17. Degen G.H., Janning P., Diel P., Bolt H.M. Estrogenic isoflavones in rodent diets. Toxicology Letters. 2002;128:145–157. doi: 10.1016/s0378-4274(02)00009-7. [DOI] [PubMed] [Google Scholar]
  18. Kleijn M.J., Schouw Y.T., Wilson P.W., Adlercreutz H., Mazur W., Grobbee D.E., Jacques EE. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framinghamstudy (1–4) Journal of Nutrition. 2001;131:1826–1832. doi: 10.1093/jn/131.6.1826. [DOI] [PubMed] [Google Scholar]
  19. Diel P., Smolnikar K., Schulz T., Laudenbach-Leschowski U., Michna H., Vollmer G. Phytoestrogens and carcinogenesis differential effects of genistein in experimental models of normal and malignant rat endometrium. Human Reproduction. 2001;16:997–1006. doi: 10.1093/humrep/16.5.997. [DOI] [PubMed] [Google Scholar]
  20. Diel P., Thomae R.B., Caldarelli A., Schmidt S., Laudenbach-Leschowski U., Vollmer G. The differential ability of the phytoestrogen genistein and of estradiol to induce uterine weight and proliferation in the rat is associated with a substance specific modulation of uterine gene expression. Molecular and Cellular Endocrinology. 2004;221:21–32. doi: 10.1016/j.mce.2004.04.006. [DOI] [PubMed] [Google Scholar]
  21. Dupont S., Krust A., Gansmuller A., Dierich A., Chambon P., Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERα) and beta (ERβ) on mouse reproductive phenotypes. Development. 2000;127:4277–4291. doi: 10.1242/dev.127.19.4277. [DOI] [PubMed] [Google Scholar]
  22. Emmen J.M., Couse J.F., Elmore S.A., Yates M.M., Kissling G.E., Korach K.S. In vitro growth and ovulation of follicles from ovaries of estrogen receptors (ER) alpha and ER beta null mice indicates a role for ER beta in follicular maturation. Endocrinology. 2005;146:2817–2826. doi: 10.1210/en.2004-1108. [DOI] [PubMed] [Google Scholar]
  23. Frasor J., Barnett D.H., Danes J.M., Hess R., Parlow A.F., Katzenellenbogen B.S. Response-specific and ligand dosedependent modulation of estrogen receptor (ER) alpha activity by ER beta in the uterus. Endocrinology. 2003;144:3159–3166. doi: 10.1210/en.2002-0143. [DOI] [PubMed] [Google Scholar]
  24. Gee A.C., Carlson K.E., Martini P.G., Katzenellenbogen B.S., Katzenellenbogen J.A. Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Molecular Endocrinology. 1999;13:1912–1923. doi: 10.1210/mend.13.11.0373. [DOI] [PubMed] [Google Scholar]
  25. Gelbke H.P., Kayser M., Poole A. OECD test strategies and methods for endocrine disruptors. Toxicology. 2004;205:17–25. doi: 10.1016/j.tox.2004.06.034. [DOI] [PubMed] [Google Scholar]
  26. Giguere V. To ERR in the estrogen pathway. Trends in Endocrinology and Metabolism. 2002;13:220–225. doi: 10.1016/s1043-2760(02)00592-1. [DOI] [PubMed] [Google Scholar]
  27. Grace P.B., Taylor J.I., Low Y.-L., Luben R.N., Mulligan A.A., Botting N.P., Dowsett M., Welch A.A., Khaw K.T., Wareham N.J., Day N.E., Bingham S.A. Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European Prospective Investigation of Cancer and Nutrition-Norfolk. Cancer Epidemiology Biomarkers and Prevention. 2004;13:698–708. [PubMed] [Google Scholar]
  28. Gray L.E., Ostby J., Sigmon R., Ferrell J., Rehnberg G., Linder R., Cooper R., Goldman J., Laskey J. The development of a protocol to assess reproductive effects of toxicants in the rat. Reproductive Toxicology. 1988;2:281–287. doi: 10.1016/0890-6238(88)90032-9. [DOI] [PubMed] [Google Scholar]
  29. Gray L.E., Ostby J., Wilson V., Lambright C., Bobseine K., Hartig P., Hotchkiss A., Wolf C., Furr J., Price M., Parks L., Cooper R.L., Stoker T.E., Laws S.C., Degitz S.J., Jensen K.M., Kahl M.D., Korte J.J., Mäkynen E.A., Tietge J.E., Ankley G.T. Xenoendocrine disrupters-tiered screening and testing. Filling key datagaps. Toxicology. 2002;181–182:371–382. doi: 10.1016/s0300-483x(02)00469-9. [DOI] [PubMed] [Google Scholar]
  30. Harris H.A., Katzenellenbogen J.A., Katzenellenbogen B.S. Characterization of the biological roles of the estrogen receptors, ER alpha and ER beta, in estrogen dependent tissues in vivo through the use of an ER alpha-selective ligand. Endocrinology. 2002;143:4172–4177. doi: 10.1210/en.2002-220403. [DOI] [PubMed] [Google Scholar]
  31. Harris H.A., Albert L.M., Leathurby Y., Malamas M.S., Mewshaw R.E., Miller C.P., Kharode Y.P., Marzolf J., Komm B.S., Winneker C.P., Frail D.E., Henderson R.A., Zhu Y., Keith J.C. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology. 2003;144:4241–4249. doi: 10.1210/en.2003-0550. [DOI] [PubMed] [Google Scholar]
  32. Hedelin M., Klint Å., Chang E.T., Bellocco R., Johansson J.-E., Andersson S.-O., Heinonen S.-M., Adlercreutz H., Adami H.-O., Grönberg H., Augustsson-Bälter K. Dietary phytoestrogen, serum enterolactone and risk of prostate cancer: the Cancer Prostate Sweden Study (Sweden) Cancer Causes and Control. 2006;17:169–180. doi: 10.1007/s10552-005-0342-2. [DOI] [PubMed] [Google Scholar]
  33. Hegele-Hartung C., Siebel P., Peters O., Kosemund D., Müller G., Hillisch A., Walter A., Kraetzschmar J., Fritzemeier K.H. Impact ofistotype-selective estrogen receptor agonists on ovarian function. Proceedings of the National Academy of Sciences ofthe United States of America. 2004;101:5129–5134. doi: 10.1073/pnas.0306720101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Heinonen S., Nurmi T., Luikkonen K., Poutanen K., Wähälä K., Takeshi D., Nishibe S., Adlercreutz H. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. Journal of Agriculture and Food Chemistry. 2001;49:3178–3186. doi: 10.1021/jf010038a. [DOI] [PubMed] [Google Scholar]
  35. Helguero L.A., Faulds M.H., Gustafsson J.Å., Haldosén L.A. Estrogen receptor alpha (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of normal murine mammary epithelial cell line HC11. Oncogene. 2005;24:6605–6616. doi: 10.1038/sj.onc.1208807. [DOI] [PubMed] [Google Scholar]
  36. Hewitt S.C., Deroo B.J., Hansen K., Collins J., Grissom S., Afshari C.A., Korach K.S. Estrogen receptordependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Molecular Endocrinology. 2003;17:2070–2083. doi: 10.1210/me.2003-0146. [DOI] [PubMed] [Google Scholar]
  37. Hilakivi-Clarke L., Cho E., Assis S., Olivo S., Ealley E., Bouker K.B., Welch J.N., Khan G., Clarke R., Cabanes A. Maternal and prepubertal diet, mammary development and breast cancer risk. Journal of Nutrition. 2001;131:154S–157S. doi: 10.1093/jn/131.1.154S. [DOI] [PubMed] [Google Scholar]
  38. Hillisch A., Peters O., Kosemund D., Müller G., Walter A., Schneider B., Peddersen G., Elger W., Fritzemeier K.H. Dissecting physiological roles of estrogen receptor α and α with potent selective ligands from structure based design. Molecular Endocrinology. 2004;18:1599–1609. doi: 10.1210/me.2004-0050. [DOI] [PubMed] [Google Scholar]
  39. Horard B., Vanacker J.M. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. Journal of Molecular Endocrinology. 2003;31:349–357. doi: 10.1677/jme.0.0310349. [DOI] [PubMed] [Google Scholar]
  40. Horn-Ross P.L., Lee M., John E.M., Koo J. Sources of phytoestrogen exposure among non-Asian women in California, USA. Cancer Causes Control. 2000;11:299–302. doi: 10.1023/a:1008968003575. [DOI] [PubMed] [Google Scholar]
  41. Horn-Ross P.L., John E.M., Lee M., Stewart S.L., Koo J., Sakoda L.C., Shiau A.C., Goldstein J., Davis P., Perez-Stable E.J. Phytoestrogen consumption and breast cancer risk in a multiethnic population: the Bay Area Breast Cancer Study. American Journal of Epidemiology. 2001;154:434–441. doi: 10.1093/aje/154.5.434. [DOI] [PubMed] [Google Scholar]
  42. Hovey R.C., Trott J.F., Vonderhaar B.K. Establishing a framework for the functional mammary gland: from endocrinology to morphology. Journal of Mammary Gland Biology and Neoplasia. 2002;7:17–38. doi: 10.1023/a:1015766322258. [DOI] [PubMed] [Google Scholar]
  43. Hyder S.M., Chiappetta C., Stancel G.M. Interaction of human estrogen receptors alpha and beta with the same naturally occurring estrogen response elements. Biochemical Pharmacology. 1999;57:597–601. doi: 10.1016/s0006-2952(98)00355-4. [DOI] [PubMed] [Google Scholar]
  44. Jefferson W.N., Padilla-Banks E., Clark G., Newbold R.R. Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse uterotrophic responses. Journal of Chromatography. 2002;B 77:179–189. doi: 10.1016/s1570-0232(02)00493-2. [DOI] [PubMed] [Google Scholar]
  45. Kang K.-S., Kim H.-S., Ryu D.-Y., Che J.-H., Lee Y.-S. Immature uterotrophic assay is more sensitive than ovariectomized utrotrophic assay for detection of estrogenicity of p-nonylphenol in Sprague-Dawley rats. Toxicology Letters. 2000;11:109–115. doi: 10.1016/s0378-4274(00)00272-1. [DOI] [PubMed] [Google Scholar]
  46. Kanno J., Onyon L., Peddada S., Ashby J., Jacob E., Owens W. The OECD program to validate the rat uterotrophic bioassay. Phase 2: Dose response studies. Environmental Health Perspectives. 2003;12:1530–1549. doi: 10.1289/ehp.5780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kanno S., Hirama S., Kayano F. Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts. Toxicology. 2004;203:211–220. doi: 10.1016/j.tox.2004.06.015. [DOI] [PubMed] [Google Scholar]
  48. Keinan-Boker L., Peeters P.H.M., Mulligan A.A., Navarro C., Slimani N., the EPIC Study Group on Soy Consumption Soy product consumption in 10 European countries: the European Prespective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutrition. 2002;5:1217–1226. doi: 10.1079/PHN2002400. [DOI] [PubMed] [Google Scholar]
  49. Kiely M., Faughnan M., Wähälä K., Brants H., Mulligan A. Phyto-oestrogen levels in foods: the design and construction of the VENUS database. British Journal of Nutrition. 2003;89:S19–S23. doi: 10.1079/BJN2002792. [DOI] [PubMed] [Google Scholar]
  50. Kilkkinen A., Valsta L.M., Virtamo J., Stumpf K., Adlercreutz H., Pietinen P. Intake of lignans is associated with serum enterolactone concentration in Finnish men and women. Journal of Nutrition. 2003;133:1830–1833. doi: 10.1093/jn/133.6.1830. [DOI] [PubMed] [Google Scholar]
  51. Koehler K.F., Helguero L.A., Haldosen L.A., Warner M., Gustafsson J.Å. Reflections on the discovery and significance of estrogen receptor beta. Endocrine Reviews. 2005;26:465–478. doi: 10.1210/er.2004-0027. [DOI] [PubMed] [Google Scholar]
  52. Korach K.S. Estrogen action in the mouse uterus: characterisation of the cytosol and nuclear receptor systems. Endocrinology. 1979;104:1324–1332. doi: 10.1210/endo-104-5-1324. [DOI] [PubMed] [Google Scholar]
  53. Korach K.S., Couse J.F., Curtis S.W., Washburn T.F., Lindzey J., Kombro K.S., Eddy E.M., Migliaccio S., Snedecker S.M., Lubahn D.B., Schmoberg D.W., Smith E.P. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Progress in Hormone Research. 1996;51:159–186. [PubMed] [Google Scholar]
  54. Kraichely D.M., Sun J., Katzenellenbogen J.A., Katzenellenbogen B.S. Conformational changes and coactivator recruitment by novel ligands for estrogen receptoralpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology. 2000;141:3534–3545. doi: 10.1210/endo.141.10.7698. [DOI] [PubMed] [Google Scholar]
  55. Krege J.H., Hodgin J.B., Couse J.F., Enmark E., Warner M., Mahler J.F., Sar M., Korach K.S., Gustafsson J.Å, Smithies O. Generation and reproductive phenotypes of mice lacking estrogen receptor α. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:15677–15682. doi: 10.1073/pnas.95.26.15677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kuiper G.G., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S., Gustafsson J.Å. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138:863–870. doi: 10.1210/endo.138.3.4979. [DOI] [PubMed] [Google Scholar]
  57. Kuiper G.G., Lemmen J.G., Carlsson B., Corton J.C., Safe S.H., Saag P.T., Burg B., Gustafsson J.Å. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 1998;139:4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  58. Lampe J.W. Isoflavonoid and lignan phytoestrogens as dietarybiomarkers. Journal of Nutrition. 2003;133:956S–964S. doi: 10.1093/jn/133.3.956S. [DOI] [PubMed] [Google Scholar]
  59. Laws S.C., Carey S., Ferrell J.M., Bodman G.J., Cooper R.L. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicology Science. 2000;54:154–167. doi: 10.1093/toxsci/54.1.154. [DOI] [PubMed] [Google Scholar]
  60. Lindberg M.K., Moverare S., Skrtic S., Gao H., Dahlman-Wright K., Gustafsson J.Å., Ohlsson C. Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying-yang” relationship between ERalpha and ERbeta in mice. Molecular Endocrinology. 2003;17:203–208. doi: 10.1210/me.2002-0206. [DOI] [PubMed] [Google Scholar]
  61. Linseisen J., Piller R., Hermann S., Chang-Claude J., German Case-Control Study Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. International Journal of Cancer. 2004;110:284–290. doi: 10.1002/ijc.20119. [DOI] [PubMed] [Google Scholar]
  62. Lorenzetti S. Estrogenic potency and beyond: assays to characterize phytoestrogens. NUTRAfoods. 2005;4:29–44. [Google Scholar]
  63. Markiewicz L., Garey J., Adlercreutz H., Gurpide E. In vitro bioassays of non-steroidal phytoestrogens. Journal of Steroid Biochemistry and Molecular Biology. 1993;45:399–405. doi: 10.1016/0960-0760(93)90009-l. [DOI] [PubMed] [Google Scholar]
  64. McDonnell D.P., Clemm D.L., Hermann T., Goldman M.E., Pike J.W. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Molecular Endocrinology. 1995;9:659–669. doi: 10.1210/mend.9.6.8592512. [DOI] [PubMed] [Google Scholar]
  65. McDonnell D.P. The molecular pharmacology of SERMs. Trends Endocrinology and Metabolism. 1999;10:301–311. doi: 10.1016/s1043-2760(99)00177-0. [DOI] [PubMed] [Google Scholar]
  66. Meegan M.J., Lloyd D.G. Advances in the science of estrogen receptor modulation. Current Medical Chemistry. 2003;10:181–210. doi: 10.2174/0929867033368501. [DOI] [PubMed] [Google Scholar]
  67. Messina, M. (2002) Brief historical overview of isoflavone research. In: Gilani, G.S. and Anderson, J.J.B. (Eds), Phytoestrogens and Health (AOCS Press), pp.1–31.
  68. Meyers M.J., Sun J., Carlson K.E., Marriner G.A., Katzenellenbogen B.S., Katzenellenbogen J.A. Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. Journal of Medical Chemistry. 2001;44:4230–4251. doi: 10.1021/jm010254a. [DOI] [PubMed] [Google Scholar]
  69. Milder I.E., Feskens E.J., Arts I.C., Mesquita H.B., Hollman P.C., Kromhout D. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women. Journal of Nutrition. 2005;135:1202–1207. doi: 10.1093/jn/135.5.1202. [DOI] [PubMed] [Google Scholar]
  70. Milder I.E., Arts I.C., Putte B., Venema D.P., Hollman P.C. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition. 2005;93:393–402. doi: 10.1079/bjn20051371. [DOI] [PubMed] [Google Scholar]
  71. Moggs J.G., Ashby J., Tinwell H., Lim F.L., Moore D.J., Kimber I., Orphanides G. The need to decide if all estrogens are intrinsically similar. Environmental Health Perspectives. 2004;112:1137–1142. doi: 10.1289/ehp.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Mueller S.O., Korach K.S. Immortalized testis cell lines from estrogen receptor (ER) alpha knock-out and wild-type mice expressing functional Eralpha or Erbeta. Journal of Andrology. 2001;22:652–664. [PubMed] [Google Scholar]
  73. Mueller S.O. Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens. Journal of Chromatography. 2002;B777:155–165. doi: 10.1016/s1570-0232(02)00282-9. [DOI] [PubMed] [Google Scholar]
  74. Mueller S.O., Simon S., Chae K., Metzler M., Korach K.S. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERα) and beta (ERβ) in human cells. Toxicology Science. 2004;80:14–25. doi: 10.1093/toxsci/kfh147. [DOI] [PubMed] [Google Scholar]
  75. Mäkelä S., Poutanen M., Kostian M.L., Lehtimaki N., Strauss L., Santti R., Vihko R. Inhibition of 17betahydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. Proceedings Of The Society For Experimental Biology And Medicine. 1998;217:310–316. doi: 10.3181/00379727-217-44237. [DOI] [PubMed] [Google Scholar]
  76. Nagel S.C., Saal F.S., Welshons W.V. The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity. Proceedings Of The Society For Experimental Biology And Medicine. 1998;217:300–309. doi: 10.3181/00379727-217-44236. [DOI] [PubMed] [Google Scholar]
  77. Nardulli A.M., Romine L.E., Carpo C., Greene G.L., Rainish B. Estrogen receptor affinity and location of consensus and imperfect estrogen response elements influence transcription activation of simplified promoters. Molecular Endocrinology. 1996;10:694–704. doi: 10.1210/mend.10.6.8776729. [DOI] [PubMed] [Google Scholar]
  78. Newbold R.R., Jefferson W.N., Padilla-Banks E., Walker V.R., Pena D.S. Cell response endpoints enhance sensitivity of the immature mouse uterotropic assay. Reproductive Toxicology. 2001;15:245–252. doi: 10.1016/s0890-6238(01)00130-7. [DOI] [PubMed] [Google Scholar]
  79. Nikov G.N., Hopkins N.E., Boue S., Alworth W.L. Interaction of dietary estrogens with human estrogen receptors and the effect on estrogen receptor-estrogen response element complex formation. Environmental Health Perspectives. 2000;108:867–872. doi: 10.1289/ehp.00108867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Nilsson S., Gustafsson J.Å. Biological role of estrogen and estrogen receptors. Critical Reviews in Biochemistry and Molecular Biology. 2002;37:1–28. doi: 10.1080/10409230290771438. [DOI] [PubMed] [Google Scholar]
  81. Nishikawa J., Saito K., Goto J., Dakeyama F., Matsuo M., Nishihara T. New screening methods for chemicals with hormonal activities using intercation of nuclear hormone receptor with coactivator. Toxicology and Applied Pharmacology. 1999;154:76–83. doi: 10.1006/taap.1998.8557. [DOI] [PubMed] [Google Scholar]
  82. Norris J.D., Paige L.A., Christensen D.J., Chang C.Y., Huacani M.R., Fan D.J., Hamilton P.T., Fowlkes D.M., McDonnell D.P. Peptide antagonist of the human estrogen receptor. Science. 1999;285:744–746. doi: 10.1126/science.285.5428.744. [DOI] [PubMed] [Google Scholar]
  83. Nutrient Requirements of Laboratory Animals, 1995. 4th Ed., Subcommittee on Laboratory Animal Nutrition, Committee on Animal Nutrition, Board on Agriculture, and National Research Council, s. 176.
  84. Odum J., Lefevre P.A., Tittensor S., Paton D., Routledge E.J., Beresford N.A., Sumpter J.P., Ashby J. The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regulatory Toxicology and Pharmacology. 1997;25:176–188. doi: 10.1006/rtph.1997.1100. [DOI] [PubMed] [Google Scholar]
  85. Odum J., Tinwell H., Tobin G., Ashby J. Cumulative dietary energy intake determines the onset of puberty in female rats. Environmental Health Perspectives. 2004;112:1472–1480. doi: 10.1289/ehp.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. OECD guideline for testing of chemicals No. 415: “One generation reproduction toxicity study”. Adopted 26 May 1983.
  87. OECD gudeline for testing of chemicals No. 416: “Twogeneration reproduction toxicity study”. Adopted 26 May 1983.
  88. Onate S.A., Tsai S.Y., Tsai M.J., O’Malley B.W. Sequenze and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270:1354–1357. doi: 10.1126/science.270.5240.1354. [DOI] [PubMed] [Google Scholar]
  89. Paige L.A., Christensen D.J., Gron H., Norris J.D., Gottlin E.B., Padilla K.M., Chang C.Y., Ballas L.M., Hamilton P.T., McDonnell D.P., Fowlkes D.M. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:3999–4004. doi: 10.1073/pnas.96.7.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Pelissero C., Lenczowski M.J., Chinzi D., Davail-Cuisset B., Sumpter J.P., Fostier A. Effects of flavonoids on aromatase activity, an in vitro study. Journal of Steroid Biochemistry and Molecular Biology. 1996;57:215–223. doi: 10.1016/0960-0760(95)00261-8. [DOI] [PubMed] [Google Scholar]
  91. Richert M.M., Schwertfeger K.L., Ryder J.W., Anderson S.M. An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia. 2000;5:227–241. doi: 10.1023/a:1026499523505. [DOI] [PubMed] [Google Scholar]
  92. Riggs B.L., Hartmann L.C. Selective estrogen-receptor-modulatorsmechanism of action and application to clinical practice. New England Journal of Medicine. 2003;348:618–629. doi: 10.1056/NEJMra022219. [DOI] [PubMed] [Google Scholar]
  93. Ritskes-Hoitinga M. The need for defined diets and refined feeding methods. Scandinavian Journal of Laboratory Animal Science. 2001;28:51–54. [Google Scholar]
  94. Rosenberg Zand R.S., Jenkins D.J., Brown T.J., Diamandis E.P. Flavonoids can block PSA production by breast and prostate cancer cell lines. Clinical Chimica Acta. 2002;317:17–26. doi: 10.1016/s0009-8981(01)00698-2. [DOI] [PubMed] [Google Scholar]
  95. Routledge E.J., White R., Parker M.G., Sumpter J.P. Differential effects of xenoestrogens on activator recruitment by estrogen receptor (ER) alpha and ER beta. Journal of Biological Chemistry. 2000;275:35986–35993. doi: 10.1074/jbc.M006777200. [DOI] [PubMed] [Google Scholar]
  96. Rowland I., Faughnan M., Hoey L., Wähälä K., Williamson G., Cassidy A. Bioavailabilityofphyto-oestrogens. British Journal of Nutrition. 2003;89:S45–58. doi: 10.1079/BJN2002796. [DOI] [PubMed] [Google Scholar]
  97. Rupp H., Soller O., Simmereli B. Bestimmung der isoflavone daidzein und genistein in sohaltigen produkten. Mitteilung Lebensmittel Hygiene. 2000;91:199–223. [Google Scholar]
  98. Russo J., Russo I.H. Experimentally induced mammary tumors in rats. Breast Cancer Research and Treatment. 1996;39:7–20. doi: 10.1007/BF01806074. [DOI] [PubMed] [Google Scholar]
  99. Russo J., Lynch H., Russo I.H. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast Journal. 2001;7:278–291. doi: 10.1046/j.1524-4741.2001.21033.x. [DOI] [PubMed] [Google Scholar]
  100. Saarinen N.M., Huovinen R., Wärri A., Mäkelä S.I., Valentin-Blasini L., Sjöholm R., Ämmälä J., Lehtilä R., Eckerman C., Collan Y.U., Santti R.S. Enterolactone inhibits the growth of 7,12-dimethylbenz(a) anthracene-induced mammary carcinomas in the rat. Molecular Cancer and Therapeutics. 2002;1:869–876. [PubMed] [Google Scholar]
  101. Setchell K.D., Zimmer-Nechemias L., Cai J., Heubi J.E. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. American Journal of Clinical Nutrition. 1998;68:1453S–1461S. doi: 10.1093/ajcn/68.6.1453S. [DOI] [PubMed] [Google Scholar]
  102. Shelby M.D., Newbold R.R., Tully D., Chae K., Davis V.L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environmental Health Perspectives. 1996;104:1296–1300. doi: 10.1289/ehp.961041296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Sheng S., Barnett D.H., Petz L.N., Katzenellenbogen J.A., Katzenellenbogen B.S. Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Molecular and Cellular Endocrinology. 2003;206:13–22. doi: 10.1016/s0303-7207(03)00255-7. [DOI] [PubMed] [Google Scholar]
  104. Shiau A.K., Barstad D., Loria P.M., Cheng L., Kushner P.J., Agard D.A., Greene G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–937. doi: 10.1016/s0092-8674(00)81717-1. [DOI] [PubMed] [Google Scholar]
  105. Smith C.L., O’Malley B.W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocrinology Reviews. 2004;25:45–71. doi: 10.1210/er.2003-0023. [DOI] [PubMed] [Google Scholar]
  106. Soto A.M., Sonnenschein C., Chung K.L., Fernandez M.F., Olea N., Serrano F. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environmental Health Perspectives. 1995;103:113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Soto A.M., Michaelson C.L., Prechtl N.V., Weill B.C., Sonnenschein C., Serrano F., Olea N. Assays to measure estrogen and androgen agonists and antagonists. Advances in Experimental Medicine and Biology. 1998;444:9–23. doi: 10.1007/978-1-4899-0089-0_3. [DOI] [PubMed] [Google Scholar]
  108. Stroheker T., Cabaton N., Berges R., Lamothe V., Lhuguenot J.-C., Chagnon M.-C. Influence of dietary soy isoflavones on the accessory sex organs of the Wistar rat. Food Chemistry and Toxicology. 2003;41:1175–1183. doi: 10.1016/s0278-6915(03)00108-x. [DOI] [PubMed] [Google Scholar]
  109. Ström A., Hartman J., Foster J.S., Kietz S., Wimalasena J., Gustafsson J.-Å. Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:1566–1571. doi: 10.1073/pnas.0308319100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Suetsugi M., Su L., Karlsberg K., Yuan Y.C., Chen S. Flavone and isoflavone phytoestrogen are agonist of estrogen-related receptors. Molecular Cancer Research. 2003;1:981–991. [PubMed] [Google Scholar]
  111. Sun J., Meyers M.J., Fink B.E., Rajendran R., Katzenellenbogen J.A., Katzenellenbogen B.S. Novel ligands that function as selective estrogens or antiestrogens for estrogen receptor-alpha or estrogen receptor-beta. Endocrinology. 1999;140:800–804. doi: 10.1210/endo.140.2.6480. [DOI] [PubMed] [Google Scholar]
  112. Suzuki T., Kitamura S., Khota R., Sugihara K., Fujimoto N., Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivates used as UV stabilizers and sunscreens. Toxicology and Applied Pharmacology. 2005;203:9–17. doi: 10.1016/j.taap.2004.07.005. [DOI] [PubMed] [Google Scholar]
  113. Thigpen J.E., Li L.-A., Richter C.B., Lebetkin E.H., Jameson C.W. The mouse bioassay for detection of estrogenic activity in rodent diets: II. Comparative estrogenic activity of purified, certified and standard open and closed formula rodent diets. Laboratory Animal Science. 1987;37:602–605. [PubMed] [Google Scholar]
  114. Thigpen J.E., Setchell K.D.R., Ahlmark K.B., Lockear J., Spahr T., Caviness G.F., Goelz M.F., Haseman J.K., Newbold R.R., Forsythe D.B. Phytoestrogen content of purified, open- and closed-formula laboratory animal diets. Laboratory Animal Science. 1999;49:530–535. [PubMed] [Google Scholar]
  115. Thigpen J.E., Haseman J.K., Saunders H., Locklear J., Caviness G., Grant M., Forsythe D. Dietary factors affecting uterine weights of immature CD-1 mice used in uterotrophic bioassays. Cancer Detection and Prevention. 2002;26:381–393. doi: 10.1016/s0361-090x(02)00122-8. [DOI] [PubMed] [Google Scholar]
  116. Thigpen J.E., Setchell K.D., Saunders H.E., Haseman J.K., Grant M.G., Forsythe D.B. Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR Journal. 2004;45:401–416. doi: 10.1093/ilar.45.4.401. [DOI] [PubMed] [Google Scholar]
  117. Tinwell H., Haseman J., Lefevre P.A., Wallis N., Ashby J. Normal sexual development of two strains of rat exposed in utero to low doses of bisphenol A. Toxicology Science. 2002;68:339–348. doi: 10.1093/toxsci/68.2.339. [DOI] [PubMed] [Google Scholar]
  118. USA, Food and Drug Administration Soy Protein and Cororary Herath Disease. Federal Register. 1999;64:57700–57733. [PubMed] [Google Scholar]
  119. Valsta L.M., Kilkkinen A., Mazur W., Nurmi T., Lampi A.M., Ovaskainen M.L., Korhonen T., Adlercreutz H., Pietinen P. Phyto-oestrogen database of foods and average intake in Finland. British Journal of Nutrition. 2003;89:S31–S38. doi: 10.1079/BJN2002794. [DOI] [PubMed] [Google Scholar]
  120. Erp-Baart M.A., Brants H.A., Kiely M., Mulligan A., Turrini A., Sermoneta C., Kilkkinen A., Valsta L.M. Isoflavone intake in four different European countries: the VENUS approach. British Journal of Nutrition. 2003;89:S25–S30. doi: 10.1079/BJN2002793. [DOI] [PubMed] [Google Scholar]
  121. Welsch C.W. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Research. 1985;45:3415–3443. [PubMed] [Google Scholar]
  122. Wijayaratne A.L., Nagel S.C., Paige L.A., Christensen D.J., Norris J.D., Fowlkes D.M., McDonnell D.P. Comparative analyses of mechanistic differences among antiestrogens. Endocrinology. 1999;140:5828–5840. doi: 10.1210/endo.140.12.7164. [DOI] [PubMed] [Google Scholar]
  123. Yamada T., Kunimatsu T., Miyata K., Yabushita S., Sukata T., Kawamura S., Seki T., Okuno Y., Mikami N. Enhanced rat Hershberger assay appears reliable for detection of not only (anti) androgenic chemicals but also thyroid hormone modulators. Toxicology Science. 2004;79:64–74. doi: 10.1093/toxsci/kfh093. [DOI] [PubMed] [Google Scholar]
  124. Zhou G., Cummings R., Li Y., Mitra S., Wilkinson H.A., Elbrecht A., Hermes J.D., Schaeffer J.M., Smith R.G., Moller D.E. Nuclear receptors have distinct affinities for coactivators: characterisation by fluorescence resonance energy transfer. Molecular Endocrinology. 1998;12:1594–1604. doi: 10.1210/mend.12.10.0176. [DOI] [PubMed] [Google Scholar]

Articles from Genes & Nutrition are provided here courtesy of BMC

RESOURCES