Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2003 Oct;20(10):421–431. doi: 10.1023/A:1026284609730

Mouse Ovarian Tissue Cryopreservation Has Only a Minor Effect on In Vitro Follicular Maturation and Gene Expression

Hung-Ching Liu 1, Zhiming He 1, Zev Rosenwaks 1
PMCID: PMC3455169  PMID: 14649382

Abstract

Purpose: To establish a protocol for ovarian tissue cryopreservation which can retain fertility potential after thawing and to evaluate the impact of cryopreservation on development and gene expression during folliculogenesis.

Methods: A controlled randomized study in a clinical and academic research setting in a university medical center was conducted to study cryopreservation and in vitro maturation (IVM) of mouse ovarian follicles. Preantral follicles isolated from either fresh (Group A) or cryopreserved (Group B) murine ovarian tissues were used to test their fertility potential by in vitro culture–in vitro maturation (IVC-IVM). Expression of Graafian follicles derived from both groups were detected by DNA microarray techniques for comparison.

Results: Although there were no significant differences in IVM outcomes and follicular gene expression between the two experimental groups, cryopreservation appears to induce the expression of heat shock proteins, DNA-damage-inducible protein 45 and death-related apoptosis genes (i.e., Fas and Fas-ligand).

Conclusion: Cryopreservation may trigger biological events not amenable to normal cell function and follicular development. However, neither follicular development nor gene expression was dramatically changed after cryopreservation. These data suggest that although our current cryopreservation techniques yield competent follicles and mature oocytes, subtle changes observed in gene expression imply that the present cryopreservation techniques need to be further refined.

Keywords: DNA chip, gene expression, in vitro maturation, ovarian tissue cryopreservation, preantral follicles

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

REFERENCES

  • 1.Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–1491. doi: 10.1093/oxfordjournals.humrep.a019423. [DOI] [PubMed] [Google Scholar]
  • 2.Candy CJ, Wood MJ, Whittingham DG. Follicular development in cryopreserved marmoset ovarian tissue after transplantation. Hum Reprod. 1995;10:2334–2338. doi: 10.1093/oxfordjournals.humrep.a136295. [DOI] [PubMed] [Google Scholar]
  • 3.Parrott DMV. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil. 1960;1:230–241. doi: 10.1530/jrf.0.0020080. [DOI] [PubMed] [Google Scholar]
  • 4.Carroll J, Gosden RG. Transplantation of frozen-thawed mouse primordial follicles. Hum Reprod. 1993;8:1163–1167. doi: 10.1093/oxfordjournals.humrep.a138221. [DOI] [PubMed] [Google Scholar]
  • 5.Gunasena KT, Villines PM, Critser ES, Critser JK. Live births after autologous transplant of cryopreserved mouse ovaries. Hum Reprod. 1997;12:101–106. doi: 10.1093/humrep/12.1.101. [DOI] [PubMed] [Google Scholar]
  • 6.Candy CJ, Wood MJ, Whittingham DG. Restoration of normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum Reprod. 2000;15:1300–1304. doi: 10.1093/humrep/15.6.1300. [DOI] [PubMed] [Google Scholar]
  • 7.Sztein J, Sweet H, Farley J, Mobraaten L. Cryopreservation and orthotopic transplantation of mouse ovaries: New approach in gamete banking. Biol Reprod. 1998;58:1071–1074. doi: 10.1095/biolreprod58.4.1071. [DOI] [PubMed] [Google Scholar]
  • 8.Shaw JM, Cox SL, Trounson AO, Jenkin G. Evaluation of the long-term function of cryopreserved ovarian grafts in the mouse, implications for human applications. Mol Cell Endocrinol. 2000;161:103–110. doi: 10.1016/s0303-7207(99)00230-0. [DOI] [PubMed] [Google Scholar]
  • 9.Harp R, Leibach J, Black J, et al. Cryopreservation of murine ovarian tissue. Cryobiol. 1994;31:336–343. doi: 10.1006/cryo.1994.1040. [DOI] [PubMed] [Google Scholar]
  • 10.Candy CJ, Wood MJ, Whittingham DG. Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J Reprod Fertil. 1997;110:11–19. doi: 10.1530/jrf.0.1100011. [DOI] [PubMed] [Google Scholar]
  • 11.Gunasena KT, Lakey JR, Villines PM, Bush M, Raath C, Critser ES, et al. Antral follicles develop in xenografted cryopreserved African elephant (Loxodonta Africana) ovarian tissue. Anim Reprod Sci. 1998;53:265–275. doi: 10.1016/s0378-4320(98)00132-8. [DOI] [PubMed] [Google Scholar]
  • 12.Gosden RG, Baird D. J. R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at -196°C. Hum Reprod. 1994;9:597–603. doi: 10.1093/oxfordjournals.humrep.a138556. [DOI] [PubMed] [Google Scholar]
  • 13.Salle B, Lornage MD, Franck M, Isoard L, Rudigoz RC, Guerin MD. Freezing, thawing, and autograft of ovarian fragments in sheep: Preliminary experiments and histologic assessment. Fertil Steril. 1998;70:124–128. doi: 10.1016/s0015-0282(98)00095-8. [DOI] [PubMed] [Google Scholar]
  • 14.Aubard Y, Piver P, Cognie Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 1995;14:2149–2154. doi: 10.1093/humrep/14.8.2149. [DOI] [PubMed] [Google Scholar]
  • 15.Salle B, Lornage J, Demirci B, Vaudover F, Poirel MT, Franck M, et al. Restoration of ovarian steroid secretion and histologic assessment after freezing, thawing, and autograft of a hemi-ovary in sheep. Fertil Steril. 1999;72:366–370. doi: 10.1016/s0015-0282(99)00238-1. [DOI] [PubMed] [Google Scholar]
  • 16.Oktay R, Nugent D, Newton H, Salha O, Chatterjee P, Gosden R. Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril. 1997;67:481–486. doi: 10.1016/s0015-0282(97)80073-8. [DOI] [PubMed] [Google Scholar]
  • 17.Oktay K, Newton H, Mullan J, Gosden RG. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod. 1998;13:1133–1138. doi: 10.1093/humrep/13.5.1133. [DOI] [PubMed] [Google Scholar]
  • 18.Weissman A, Gotlieb L, Colgan T, Jurisicova A, Greenblatt EM, Casper RF. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod. 1999;60:1462–1467. doi: 10.1095/biolreprod60.6.1462. [DOI] [PubMed] [Google Scholar]
  • 19.Oktay K, Karlikaya G, Gosden R, Schwarz R: Ovarian function after autologous transplantation of frozen-banked human ovarian tissue [Abstract no. O-054]. In: 1999 Annual meeting Program Supplement of the American Society for Reproductive Medicine and Canadian Fertility and Andrology Society, Toronto, Canada. Fertil Steril 1999;S21
  • 20.Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril. 2000;73:599–603. doi: 10.1016/s0015-0282(99)00548-8. [DOI] [PubMed] [Google Scholar]
  • 21.Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342:1919. doi: 10.1056/NEJM200006223422516. [DOI] [PubMed] [Google Scholar]
  • 22.Gook DA, Edgar DH, Stern C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2 propanediol. Hum Reprod. 1999;14:2061–2068. doi: 10.1093/humrep/14.8.2061. [DOI] [PubMed] [Google Scholar]
  • 23.Gook DA, Edgar DH, Stern C. The effects of cryopreservation regimens on the morphology of human ovarian tissue. Mol Cell Endocrinol. 2000;169:99–103. doi: 10.1016/s0303-7207(00)00360-9. [DOI] [PubMed] [Google Scholar]
  • 24.Gook DA, McCully BA, Edgar DH, McBain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001;16:417–422. doi: 10.1093/humrep/16.3.417. [DOI] [PubMed] [Google Scholar]
  • 25.Eppig JJ, O'Brien MJ. Development in-vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54:197–207. doi: 10.1095/biolreprod54.1.197. [DOI] [PubMed] [Google Scholar]
  • 26.Liu J, Van der Elst J, Van den Broecke R, Dumortier F, Dhont M. Maturation of mouse primordial follicles by combination of grafting and in vitro culture. Biol Reprod. 2000;62:1218–1223. doi: 10.1095/biolreprod62.5.1218. [DOI] [PubMed] [Google Scholar]
  • 27.Horvatta O, Silye R, Abir R, Krausz T, Winston RML. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12:1021–1036. doi: 10.1093/humrep/12.5.1032. [DOI] [PubMed] [Google Scholar]
  • 28.Horvatta O, Wright C, Krausz T, Hardy K, Winston RML. Human primordial, primary and secondary ovarian follicles in long term culture: Effect of partial isolation. Hum Reprod. 1999;14:2519–2524. doi: 10.1093/humrep/14.10.2519. [DOI] [PubMed] [Google Scholar]
  • 29.Horvatta O. Cryopreservation and culture of human primordial and primary ovarian follicles. Mol Cell Endrocrinol. 2000;169:95–97. doi: 10.1016/s0303-7207(00)00359-2. [DOI] [PubMed] [Google Scholar]
  • 30.Baird DT, Webb R, Campbell B, Harkness M, Gosden RG. Long-term function in sheep after ovariectomy and transplantation of autografts stored at -196°C. Endocrinology. 1999;140:462–471. doi: 10.1210/endo.140.1.6453. [DOI] [PubMed] [Google Scholar]
  • 31.Grischenko VI, Chub NN, Lobyntseva GS, et al. Creation of a bank of cryopreserved human ovarian tissue for allotransplantation in gynaecology. Kriobiologia. 1987;3:7–11. [Google Scholar]
  • 32.Aubard Y. Are there indications for cryogenically preserving ovarian tissue in gynecologic oncology. Gynecol Obstet Fertil. 2000;28:285–290. [PubMed] [Google Scholar]
  • 33.Liu HC, He ZM, Rosenwaks Z. In-vitro culture and invitro maturation (IVC-IVM) of mouse preantral follicles with recombinant gonadotropins. Fertil Steril. 2002;77:373–383. doi: 10.1016/s0015-0282(01)02977-6. [DOI] [PubMed] [Google Scholar]
  • 34.Liu HC, He Z. R. Z. Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis. Fertil Steril. 2001;75:947–955. doi: 10.1016/s0015-0282(01)01706-x. [DOI] [PubMed] [Google Scholar]
  • 35.Boland NI, Humpherson PG, Leese HJ, Gosden RG. Characterization of follicular energy metabolism. Hum Reprod. 1994;9:604–609. doi: 10.1093/oxfordjournals.humrep.a138557. [DOI] [PubMed] [Google Scholar]
  • 36.Eppigg JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development of live young after growth, maturation, and fertilization in-vitro. Biol Reprod. 1989;41:268–276. doi: 10.1095/biolreprod41.2.268. [DOI] [PubMed] [Google Scholar]
  • 37.Cortvrindt R, Smitz J, Van S. V. Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum Reprod. 1997;12(4):759–768. doi: 10.1093/humrep/12.4.759. [DOI] [PubMed] [Google Scholar]
  • 38.Moomjy M, Rosenwaks Z. Ovarian tissue cryopreservation: The time is now. Transplantation or in-vitro maturation: The time awaits [Editorial] Fertil Steril. 1998;69:999–1000. doi: 10.1016/s0015-0282(98)00091-0. [DOI] [PubMed] [Google Scholar]
  • 39.Meirow D, Yehunda DB, Prus D, Pollack A, Schenker JG, Rachmilewitz EA, et al. Ovarian tissue banking in patients with Hodgkin's disease: Is it safe? Fertil Steril. 1998;69:996–998. doi: 10.1016/s0015-0282(98)00093-4. [DOI] [PubMed] [Google Scholar]
  • 40.Kurokawa T, Kinoshita T, Ito T, Saito H, Hotta T. Detection of minimal residual disease in B cell lymphoma by PCR mediated RNAse protection assay. Leukemia. 1996;10:1222–1231. [PubMed] [Google Scholar]
  • 41.Chambers J, Angulo A, Amaratunga D, Guo HQ, Jiang Y, Wan JS, et al. DNA microarrays of the complex human cytomegalovirus genome: Profiling kinetic class with drug sensitivity of viral gene expression. J Virol. 1999;73:5757–5766. doi: 10.1128/jvi.73.7.5757-5766.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Kurian KM, Watson CJ, Wyllie AH. DNA chip technology [Editorial] J Pathol. 1999;187:267–271. doi: 10.1002/(SICI)1096-9896(199902)187:3<267::AID-PATH275>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • 43.Watson SJ, Akil H. Gene chips and arrays revealed: A primer on their power and their uses. Biol Psychiatry. 1999;45:533–543. doi: 10.1016/s0006-3223(98)00339-4. [DOI] [PubMed] [Google Scholar]
  • 44.Kaminski N, Allard JD, Pittet JF, Zuo F, Zuo F, Griffiths MJD, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Natl Acad Sci USA. 2000;97:1778–1783. doi: 10.1073/pnas.97.4.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ahrendt SA, Halachmi S, Chow JT, Wu L, Halachmi N, Yang SC, et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA. 1999;96:7382–7387. doi: 10.1073/pnas.96.13.7382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Afshari CA, Nuwaysir EF, Barrett JC. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 1999;59:4759–4760. [PubMed] [Google Scholar]
  • 47.Medlin JF. Timely toxicology. Environmental Health Perspectives. 1999;107:A256–A258. doi: 10.1289/ehp.99107a256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wilgenbua KK, Lichter P. DNA chip technology ante portas. J Mol Med. 1999;77:761–768. doi: 10.1007/s001099900057. [DOI] [PubMed] [Google Scholar]
  • 49.Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AH. Board patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotede arrays. Proc Natl Acad Sci USA. 1999;96:6745–6750. doi: 10.1073/pnas.96.12.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES