Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(11):3409–3413. doi: 10.1073/pnas.81.11.3409

Isolation of flagellated membrane vesicles from Caulobacter crescentus cells: evidence for functional differentiation of polar membrane domains.

E Huguenel, A Newton
PMCID: PMC345517  PMID: 6587358

Abstract

An immunoaffinity chromatography procedure is described for the separation of membrane vesicles from Caulobacter crescentus cells into flagellated (polar) vesicles and nonflagellated (nonpolar) vesicles. Analysis by two-dimensional gel electrophoresis shows that a number of proteins are associated primarily with either the polar or the nonpolar fraction, and this result suggests that the envelope of these cells is organized into at least two relatively stable domains. Radioimmunoassay also shows that the membrane pool of flagellin, which is known to behave as a precursor in the assembly of the flagellar filament, may be localized exclusively in the polar membrane domain. Thus, the results provide biochemical evidence for the structural and functional differentiation of the C. crescentus cell envelope. These findings are consistent with a model we proposed previously to explain the targeting of surface structures to the new cell pole of C. crescentus. The immunoadsorption approach described here should be useful in the further investigation of this problem, as well as in the fractionation of membrane domains with characteristic surface antigens in other systems.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clancy M. J., Newton A. Localization of proteins in the inner and outer membranes of Caulobacter crescentus. Biochim Biophys Acta. 1982 Apr 7;686(2):160–169. doi: 10.1016/0005-2736(82)90108-0. [DOI] [PubMed] [Google Scholar]
  2. Engström P., Hazelbauer G. L. Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella. Biochim Biophys Acta. 1982 Mar 23;686(1):19–26. doi: 10.1016/0005-2736(82)90147-x. [DOI] [PubMed] [Google Scholar]
  3. Evinger M., Agabian N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol. 1977 Oct;132(1):294–301. doi: 10.1128/jb.132.1.294-301.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huguenel E. D., Newton A. Evidence that subcellular flagellin pools in Caulobacter crescentus are precursors in flagellum assembly. J Bacteriol. 1984 Mar;157(3):727–732. doi: 10.1128/jb.157.3.727-732.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huguenel E. D., Newton A. Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus. Differentiation. 1982;21(2):71–78. doi: 10.1111/j.1432-0436.1982.tb01199.x. [DOI] [PubMed] [Google Scholar]
  6. Ito A., Palade G. E. Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. Evidence obtained by immunoadsorption method. J Cell Biol. 1978 Nov;79(2 Pt 1):590–597. doi: 10.1083/jcb.79.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lagenaur C., Agabian N. Caulobacter flagellar organelle: synthesis, compartmentation, and assembly. J Bacteriol. 1978 Sep;135(3):1062–1069. doi: 10.1128/jb.135.3.1062-1069.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindmark R., Thorén-Tolling K., Sjöquist J. Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J Immunol Methods. 1983 Aug 12;62(1):1–13. doi: 10.1016/0022-1759(83)90104-7. [DOI] [PubMed] [Google Scholar]
  10. Marty-Mazars D., Horiuchi S., Tai P. C., Davis B. D. Proteins of ribosome-bearing and free-membrane domains in Bacillus subtilis. J Bacteriol. 1983 Jun;154(3):1381–1388. doi: 10.1128/jb.154.3.1381-1388.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Merisko E. M., Farquhar M. G., Palade G. E. Coated vesicle isolation by immunoadsorption on Staphylococcus aureus cells. J Cell Biol. 1982 Mar;92(3):846–857. doi: 10.1083/jcb.92.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  13. Osley M. A., Sheffery M., Newton A. Regulation of flagellin synthesis in the cell cycle of caulobacter: dependence on DNA replication. Cell. 1977 Oct;12(2):393–400. doi: 10.1016/0092-8674(77)90115-5. [DOI] [PubMed] [Google Scholar]
  14. Schmidt J. M. Observations on the adsorption of Caulobacter bacteriophages containing ribonucleic acid. J Gen Microbiol. 1966 Nov;45(2):347–353. doi: 10.1099/00221287-45-2-347. [DOI] [PubMed] [Google Scholar]
  15. Shapiro L., Maizel J. V., Jr Synthesis and structure of Caulobacter crescentus flagella. J Bacteriol. 1973 Jan;113(1):478–485. doi: 10.1128/jb.113.1.478-485.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shaw P., Gomes S. L., Sweeney K., Ely B., Shapiro L. Methylation involved in chemotaxis is regulated during Caulobacter differentiation. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5261–5265. [PMC free article] [PubMed] [Google Scholar]
  17. Sheffery M., Newton A. Reconstitution and purification of flagellar filaments from Caulobacter crescentus. J Bacteriol. 1977 Dec;132(3):1027–1030. doi: 10.1128/jb.132.3.1027-1030.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sheffery M., Newton A. Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell. 1981 Apr;24(1):49–57. doi: 10.1016/0092-8674(81)90500-6. [DOI] [PubMed] [Google Scholar]
  19. Sloat B. F., Adams A., Pringle J. R. Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1981 Jun;89(3):395–405. doi: 10.1083/jcb.89.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smit J., Agabian N. Caulobacter crescentus pili: analysis of production during development. Dev Biol. 1982 Jan;89(1):237–247. doi: 10.1016/0012-1606(82)90310-4. [DOI] [PubMed] [Google Scholar]
  21. Smit J., Agabian N. Cell surface patterning and morphogenesis: biogenesis of a periodic surface array during Caulobacter development. J Cell Biol. 1982 Oct;95(1):41–49. doi: 10.1083/jcb.95.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Terrana B., Newton A. Pattern of unequal cell division and development in Caulobacter crescentus. Dev Biol. 1975 Jun;44(2):380–385. doi: 10.1016/0012-1606(75)90409-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES