Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2000 Jan;17(1):51–59. doi: 10.1023/A:1009454114973

The Effects of Age and Abnormal Sperm Count on the Nondisjunction of Spermatozoa

H Asada 1,2, K Sueoka 1, T Hashiba 1, M Kuroshima 1, N Kobayashi 1, Y Yoshimura 1
PMCID: PMC3455190  PMID: 10754784

Abstract

Purpose: The effect of paternal age on the nondisjunctionof sex chromosomes is controversial. Also, the prevalenceof chromosomal anomalies in infertile patients iscontroversial, it has been reported that the sex chromosomalaneuploidy rate following treatment with intracytoplasmic sperminjection (ICSI) is higher than in naturally conceivedpregnancies. We investigated the influence of paternal age andoligozoospermia on the nondisjunction of spermatozoa.

Methods: We determined the rate of aneuploidy forgonosomes and autosomes, using two-color fluorescence in situhybridization (FISH) of the X and Y chromosomes andchromosomes 12 and 18 in 10 donors under 25 years of agewho had a normal sperm count (≤20 × 106/ml), 10 donorsover the age of 39 years with idiopathic infertility andnormozoospermia (≤20 × 106/ml), and 5 oligozoospermicdonors (<20 × 106/ml).

Results: There was no obvious relationship betweenincreasing age and autosomal disomy (disomy 12 and disomy 18).Neither autosomal disomy nor diploidy was increased inany group. The frequency of X-, Y-, XX-, and YY-bearingsperm did not differ significantly among groups, but thefrequency of XY-bearing sperm was significantly higher inthe older infertile group than in the control donors.

Conclusions: The incidence of nondisjunction of paternalsex chromosome in meiosis I was higher in older men withidiopathic infertility. The present results suggest that therisk of producing XXY fetuses is higher among men >39years of age with idiopathic infertility.

Keywords: paternal age, nondisjunction, spermatozoa, sex chromosome

Full Text

The Full Text of this article is available as a PDF (68.7 KB).

REFERENCES

  • 1.Kamiguchi Y, Mikamo K. An improved, efficient method for analyzing human sperm chromosomes using zona-free hamster ova. Am J Hum Genet. 1986;38:724–740. [PMC free article] [PubMed] [Google Scholar]
  • 2.Matsuda T, Horii Y, Ogura K, Nonomura M, Okada K, Yoshida O. Chromosomal survey of 1001 subfertile males: Incidence and clinical features of males with chromosomal anomalies. Acta Urol Japon. 1992;38:803–809. [PubMed] [Google Scholar]
  • 3.Retief AE, Van ZJ, Menkveld R, Fox MF, Kotze GM, Brusnicky J. Chromosome studies in 496 infertile males with a sperm count below 10 million/mL. Hum Genet. 1984;66:162–164. doi: 10.1007/BF00286592. [DOI] [PubMed] [Google Scholar]
  • 4.Bonaccorsi AC, Martins RH, Vargas F, Franco JJ, Botler J. Genetic disorders in normally androgenized infertile men and the use of intracytoplasmic sperm injection as a way of treatment. Fertil Steril. 1997;67:928–931. doi: 10.1016/s0015-0282(97)81409-4. [DOI] [PubMed] [Google Scholar]
  • 5.Bonduelle M, Wilikens A, Buysse A, Van AE, Wisanto A, Devroey P, Van SA, Liebaers I. Prospective follow-up study of 877 children born after intracytoplasmic sperm injection (ICSI), with ejaculated epididymal and testicular spermatozoa and after replacement of cryopreserved embryos obtained after ICSI. Hum Reprod. 1996;11(Suppl4):131–155. doi: 10.1093/humrep/11.suppl_4.131. [DOI] [PubMed] [Google Scholar]
  • 6.Liebaers I, Bonduelle M, Van AE, Devroey P, Van SA. Sex chromosome abnormalities after intracytoplasmic sperm injec-tion [Letter; Comment] Lancet. 1995;346:1095. [PubMed] [Google Scholar]
  • 7.Guttenbach M, Martinez EM, Michelmann HW, Engel W, Schmid M. Incidence of diploid and disomic sperm nuclei in 45 infertile men. Hum Reprod. 1997;12:468–473. doi: 10.1093/humrep/12.3.468. [DOI] [PubMed] [Google Scholar]
  • 8.Miharu N, Best RG, Young SR. Numerical chromosome abnormalities in spermatozoa of fertile and infertile men detected by fluorescence in situ hybridization [see Comments] Hum Genet. 1994;93:502–506. doi: 10.1007/BF00202812. [DOI] [PubMed] [Google Scholar]
  • </del>.Moosani N, Pattinson HA, Carter MD, Cox DM, Rademaker AW, Martin RH. Chromosomal analysis of sperm from men with idiopathic infertility using sperm karyotyping and fluorescence in situ hybridization. Fertil Steril. 1995;64:811–817. doi: 10.1016/s0015-0282(16)57859-5. [DOI] [PubMed] [Google Scholar]
  • 10.Bernardini L, Martini E, Geraedts JP, Hopman AH, Lanteri S, Conte N, Capitanio GL. Comparison of gonosomal aneuploidy in spermatozoa of normal fertile men and those with severe male factor detected by in-situ hybridization. Mol Hum Reprod. 1997;3:431–438. doi: 10.1093/molehr/3.5.431. [DOI] [PubMed] [Google Scholar]
  • 11.Griffin DK, Abruzzo MA, Millie EA, Sheean LA, Feingold E, Sherman SL, Hassold TJ. Non-disjunction in human sperm: Evidence for an effect of increasing paternal age. Hum Mol Genet. 1995;4:2227–2232. doi: 10.1093/hmg/4.12.2227. [DOI] [PubMed] [Google Scholar]
  • 12.Rouseaux S, Hazzouri M, Pelletier R, Monteil M, Usson Y, Sele B. Disomy rates for chromosomes 14 and 21 studied by fluorescent in-situ hybridization in spermatozoa from three men over 60 years of age. Mol Hum Reprod. 1998;4:695–699. doi: 10.1093/molehr/4.7.695. [DOI] [PubMed] [Google Scholar]
  • 13.Gaulden ME. Maternal age effect: the enigma of Down syn-drome and other trisomic conditions. Mutat Res. 1992;296:69–88. doi: 10.1016/0165-1110(92)90033-6. [DOI] [PubMed] [Google Scholar]
  • 14.Hassold TJ, Jacobs PA. Trisomy in man. Annu Rev Genet. 1984;18:69–97. doi: 10.1146/annurev.ge.18.120184.000441. [DOI] [PubMed] [Google Scholar]
  • 15.Antonarakis SE, Petersen MB, McInnis MG, et al. The meiotic stage of nondisjunction in trisomy 21: Determination by using DNA polymorphisms. Am J Hum Genet. 1992;50:544–550. [PMC free article] [PubMed] [Google Scholar]
  • 16.Fisher JM, Harvey JF, Morton NE, Jacobs PA. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am J Hum Genet. 1995;56:669–675. [PMC free article] [PubMed] [Google Scholar]
  • 17.Zaragoza MV, Jacobs PA, James RS, Rogan P, Sherman S, Hassold T. Nondisjunction of human acrocentric chromosomes: Studies of 432 trisomic fetuses and liveborns. Hum Genet. 1994;94:411–417. doi: 10.1007/BF00201603. [DOI] [PubMed] [Google Scholar]
  • 18.MacDonald M, Hassold T, Harvey J, Wang LH, Morton NE, Jacobs P. The origin of 47,XXY and 47,XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum Mol Genet. 1994;3:1365–1371. doi: 10.1093/hmg/3.8.1365. [DOI] [PubMed] [Google Scholar]
  • 19.Lorda SI, Binkert F, Maechler M, Robinson WP, Schinzel AA. Reduced recombination and paternal age effect in Klinefelter syndrome. Hum Genet. 1992;89:524–530. doi: 10.1007/BF00219178. [DOI] [PubMed] [Google Scholar]
  • 20.WHO (1992) WHO Laboratory Manual for the examination of human semen and sperm-cervical mucus interaction. 3rd ed.
  • 21.Guttenbach M, Schmid M. Determination of Y chromosome aneuploidy in human sperm nuclei by nonradioactive in situ hybridization. Am J Hum Genet. 1990;46:553–558. [PMC free article] [PubMed] [Google Scholar]
  • 22.Coonen E, Pieters MH, Dumoulin JC, Meyer H, Evers JL, Rademakers FC, Geraedts JP. Nonisotopic in situ hybridization as a method for nondisjunction studies in human spermatozoa. Mol Reprod Dev. 1991;28:18–22. doi: 10.1002/mrd.1080280104. [DOI] [PubMed] [Google Scholar]
  • 23.Martin RH, Chan K, Ko E, Rademaker AW. Detection of aneuploidy in human sperm by fluorescence in situ hybridiza-tion (FISH): Different frequencies in fresh and stored sperm nuclei. Cytogenet Cell Genet. 1994;65:95–96. doi: 10.1159/000133608. [DOI] [PubMed] [Google Scholar]
  • 24.Williams BJ, Ballenger CA, Malter HE, Bishop F, Tucker M, Zwingman TA, Hassold TJ. Non-disjunction in human sperm: results of fluorescence in situ hybridization studies using two and three probes. Hum Mol Genet. 1993;2:1929–1936. doi: 10.1093/hmg/2.11.1929. [DOI] [PubMed] [Google Scholar]
  • 25.Bischoff FZ, Nguyen DD, Burt KJ, Shaffer LG. Estimates of aneuploidy using multicolor fluorescence in situ hybridization on human sperm [published Erratum appears in Cytogenet Cell Genet 1995;69 (3-4):189] Cytogenet Cell Genet. 1994;66:237–243. doi: 10.1159/000133702. [DOI] [PubMed] [Google Scholar]
  • 26.Martin RH, Ko E, Chan K. Detection of aneuploidy in human interphase spermatozoa by fluorescence in situ hybridization (FISH) Cytogenet Cell Genet. 1993;64:23–26. doi: 10.1159/000133552. [DOI] [PubMed] [Google Scholar]
  • 27.Goldman AS, Fomina Z, Knights PA, Hill CJ, Walker AP, Hulten MA. Analysis of the primary sex ratio, sex chromosome aneuploidy and diploidy in human sperm using dual-colour fluorescence in situ hybridisation. Eur J Hum Genet. 1993;1:325–334. doi: 10.1159/000472431. [DOI] [PubMed] [Google Scholar]
  • 28.Rademaker A, Spriggs E, Ko E, Martin RH. Reliability of estimates of diploid human spermatozoa using multicolour fluorescence in-situ hybridization. Hum Reprod. 1997;12:77–79. doi: 10.1093/humrep/12.1.77. [DOI] [PubMed] [Google Scholar]
  • 29.Guttenbach M, Schakowski R, Schmid M. Incidence of chromosome 3, 7, 10, 11, 17 and X disomy in mature human sperm nuclei as determined by nonradioactive in situ hybridization. Hum Genet. 1994;93:7–12. doi: 10.1007/BF00218904. [DOI] [PubMed] [Google Scholar]
  • 30.Spriggs EL, Rademaker AW, Martin RH. Aneuploidy in human sperm: results of two-and three-color fluorescence in situ hybridization using centromeric probes for chromosomes 1, 12, 15, 18, X, and Y. Cytogenet Cell Genet. 1995;71:47–53. doi: 10.1159/000134060. [DOI] [PubMed] [Google Scholar]
  • 31.Spriggs EL, Rademaker AW, Martin RH. Aneuploidy in human sperm: the use of multicolor FISH to test various theories of nondisjunction. Am J Hum Genet. 1996;58:356–362. [PMC free article] [PubMed] [Google Scholar]
  • 32.Chevret E, Rousseaux S, Monteil M, Pelletier R, Cozzi J, Sele B. Meiotic segregation of the X and Y chromosomes and chromosome 1 analyzed by three-color FISH in human interphase spermatozoa. Cytogenet Cell Genet. 1995;71:126–130. doi: 10.1159/000134090. [DOI] [PubMed] [Google Scholar]
  • 33.Pellestor F. Differential distribution of aneuploidy in human gametes according to their sex. Hum Reprod. 1991;6:1252–1258. doi: 10.1093/oxfordjournals.humrep.a137522. [DOI] [PubMed] [Google Scholar]
  • 34.Mohandas TK, Speed RM, Passage MB, Yen PH, Chandley AC, Shapiro LJ. Role of the pseudoautosomal region in sexchromosome pairing during male meiosis: Meiotic studies in a man with a deletion of distal Xp. Am J Hum Genet. 1992;51:526–533. [PMC free article] [PubMed] [Google Scholar]
  • 35.Hassold TJ, Sherman SL, Pettay D, Page DC, Jacobs PA. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am J Hum Genet. 1991;49:253–260. [PMC free article] [PubMed] [Google Scholar]
  • 36.Abruzzo MA, Hassold TJ. Etiology of nondisjunction in humans. Environ. Mol Mutagen. 1995;26:38–47. doi: 10.1002/em.2850250608. [DOI] [PubMed] [Google Scholar]
  • 37.Carothers AD, Filippi G. Klinefelter's syndrome in Sardinia and Scotland. Comparative studies of parental age and other aetiological factors in 47,XXY. Hum Genet. 1988;81:71–75. doi: 10.1007/BF00283733. [DOI] [PubMed] [Google Scholar]
  • 38.May KM, Jacobs PA, Lee M, Ratcliffe S, Robinson A, Nielsen J, Hassold TJ. The parental origin of the extra X chromosome in 47,XXX females. Am J Hum Genet. 1990;46:754–761. [PMC free article] [PubMed] [Google Scholar]
  • 39.Hassold TJ, Arnovitz K, Jacobs PA, May K, Robinson D. The oligoparental origin of the missing or additional chromosome in 45,X and 47,XXX females. Birth Defects Orig Article Ser. 1990;26:297–304. [PubMed] [Google Scholar]
  • 40.Tada T, Takagi N, Adler ID. Parental imprinting on the mouse X chromosome: effects on the early development of XO, XXY and XXX embryos. Genet Res. 1993;62:139–148. doi: 10.1017/s0016672300031736. [DOI] [PubMed] [Google Scholar]
  • 41.Maeda T, Ohno M, Matsunobu A, YoshiharaK, Yabe N. A cytogenetic survey of 14,835 consecutive liveborns. Jinrui Idengaku Zasshi. 1991;36:117–129. doi: 10.1007/BF01876812. [DOI] [PubMed] [Google Scholar]
  • 42.Benn PA, Hsu LY, Carlson A, Tannenbaum HL. The centralized prenatal genetics screening program of New York City III: The first 7,000 cases. Am J Med Genet. 1985;20:369–384. doi: 10.1002/ajmg.1320200221. [DOI] [PubMed] [Google Scholar]
  • 43.Hunt PA. Survival of XO mouse fetuses: effect of parental origin of the X chromosome or uterine environment? Develop-ment. 1991;111:1137–1141. doi: 10.1242/dev.111.4.1137. [DOI] [PubMed] [Google Scholar]
  • 44.Russell WL, Kelly EM, Hunsicker PR, et al. Report of the United Nations Science Commitee on the Effect of Atomic Radiations. New York: United Nations; 1972. Effect of radiation dose-rate on the induction of X-chromosome loss in female mice. [Google Scholar]
  • 45.Fitzgerald PH, McEwan CM. Total aneuploidy and age-related sex chromosome aneuploidy in cultured lymphocytes of normal men and women. Hum Genet. 1977;39:329–337. doi: 10.1007/BF00295428. [DOI] [PubMed] [Google Scholar]
  • 46.Reijo R, Alagappan RK, Patrizio P, Page DC. Severe oligoparental zoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet. 1996;347:1290–1293. doi: 10.1016/s0140-6736(96)90938-1. [DOI] [PubMed] [Google Scholar]
  • 47.Veld P, Broekmans FJ, de FH, Pearson PL, Pieters MH, Kooij R. Intracytoplasmic sperm injection (ICSI) and chromosomally abnormal spermatozoa. Hum Reprod. 1997;12:752–754. doi: 10.1093/humrep/12.4.752. [DOI] [PubMed] [Google Scholar]
  • 48.Gabarron J, Jimenez A, Glover G. Premature centromere divi-sion dominantly inherited in a subfertile family. Cytogenet Cell Genet. 1986;43:69–71. doi: 10.1159/000132299. [DOI] [PubMed] [Google Scholar]
  • 49.Martin RH, Rademaker A. The relationship between sperm chromosomal abnormalities and sperm morphology in humans. Mutat Res. 1988;207:159–164. doi: 10.1016/0165-7992(88)90081-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES