Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 1999 Mar;16(3):128–132. doi: 10.1023/A:1022527714175

Destruction of Protamine in Human Sperm Inhibits Sperm Binding and Penetration in the Zona-Free Hamster Penetration Test but Increases Sperm Head Decondensation and Male Pronuclear Formation in the Hamster–ICSI Assay

Ali Ahmadi 1, Soon-Chye Ng 1,
PMCID: PMC3455208  PMID: 10091115

Abstract

Purpose:Our purpose was to investigate the fertilizing ability of human protamine-damaged sperm in a heterologous system using hamster oocytes.

Methods:The protamine of the sperm were damaged by exposure to dithiothreitol, a disulfide-reducing agent. Their ability to penetrate and form male pronuclei were investigated using the zona-free hamster penetration test and the hamster–intracytoplasmic sperm injection assay, respectively.

Results:The zona-free hamster penetration test revealed that protamine-damaged sperm are unable to bind and penetrate the hamster oocyte. On the other hand, hamster–intracytoplasmic sperm injection assay results showed that 56.9% and 39.2% of the injected oocytes developed male pronuclei in protamine-damaged and live-intact sperm groups, respectively, with a significant difference in these rates (P < 0.01).

Conclusions:This study shows that protamine-damaged sperm are able to undergo sperm head decondensation and male pronuclear formation only when injected into the ooplasm, although they cannot bind and penetrate through the zona and enter the ooplasm.

Keywords: protamine-damaged, dead sperm, binding, penetration, sperm head decondensation, male pronuclear formation

Full Text

The Full Text of this article is available as a PDF (464.6 KB).

REFERENCES

  • 1.Perreault SD, Wolff RA, Zirkin BR. The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol. 1984;101:160–167. doi: 10.1016/0012-1606(84)90126-x. [DOI] [PubMed] [Google Scholar]
  • 2.Zirkin BR, Soucek DA, Chang TSK, Perreault SD. In vitro and in vivo studies of mammalian sperm nuclear decondensation. Gamete Res. 1985;11:349–365. [Google Scholar]
  • 3.Marushige Y, Marushige K. Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem. 1975;250:39–45. [PubMed] [Google Scholar]
  • 4.Wagner TE, Sliwinski JE, Shewmaker DB. Subunit structure of eutherian sperm chromatin. Arch Androl. 1978;1:31–41. doi: 10.3109/01485017808988315. [DOI] [PubMed] [Google Scholar]
  • 5.Incharoenasakdi A, Panyim S. In vitro decondensation of human sperm chromatin. Andrologia. 1981;13:64–73. doi: 10.1111/j.1439-0272.1981.tb00010.x. [DOI] [PubMed] [Google Scholar]
  • 6.Zirkin BR, Chang TSK. Involvement of endogenous proteolytic activity in thiol-induced release of DNA template restrictions in rabbit sperm nuclei. Biol Reprod. 1977;17:131–137. doi: 10.1095/biolreprod17.1.131. [DOI] [PubMed] [Google Scholar]
  • 7.Bustos-Obergon E, Leiva S. Chromatin packing in normal and teratozoospermic human ejaculated spermatozoa. Andrologia. 1983;15:468–478. doi: 10.1111/j.1439-0272.1983.tb00171.x. [DOI] [PubMed] [Google Scholar]
  • 8.Calvin HI, Bedford JM. Formation of disulfide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil. 1971;13(Suppl):65–75. [PubMed] [Google Scholar]
  • 9.Evenson DP, Witkin SS, De Harven E, Bendich A. Ultrastructure of partially decondensed human spermatozoal chromatin. J Ultrastruct Res. 1978;63:178–187. doi: 10.1016/s0022-5320(78)80073-2. [DOI] [PubMed] [Google Scholar]
  • 10.Sobhon P, Thungkasemvathana P, Tanphaichitr N. Electron microscope studies of rat sperm heads treated with urea, dithiothreitol and micrococal nuclease. Anat Rec. 1981;201:225–235. doi: 10.1002/ar.1092010203. [DOI] [PubMed] [Google Scholar]
  • 11.Gall WE, Ohsumi Y. Decondensation of sperm nuclei in vitro. Exp Cell Res. 1976;102:349–358. doi: 10.1016/0014-4827(76)90050-1. [DOI] [PubMed] [Google Scholar]
  • 12.Zirkin BR, Chang TSK, Heaps J. Involvement of an acrosinlike proteinase in the sulfhydryl-induced degradation of rabbit sperm nuclear protamine. J Cell Biol. 1980;82:116–121. doi: 10.1083/jcb.85.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tanphaichitr N, Sobhon P, Chalermissarachai P, Patilantakarnkool M. Acid-extracted nuclear proteins and ultrastructure of human chromatin as revealed by differential extraction with urea, mercaptoethanol and salt. Gamete Res. 1981;4:297–315. [Google Scholar]
  • 14.Rodman TT, Pruslin FH, Allfrey VG. Mechanisms of displacement of sperm basic nuclear proteins in mammals. An in vitro simulation of post-fertilization results. J Cell Sci. 1982;53:227–244. doi: 10.1242/jcs.53.1.227. [DOI] [PubMed] [Google Scholar]
  • 15.Chang TSK, Zirkin BR. Proteolytic degradation of protamine during thiol-induced nuclear decondensation in rabbit spermatozoa. J Exp Zool. 1978;204:283–289. doi: 10.1002/jez.1402040216. [DOI] [PubMed] [Google Scholar]
  • 16.Fleming AD, Kosower NS, Yanagimachi R. Promotion of capacitation of guinea pig spermatozoa by the membrane mobility agent, A2C, and inhibition by disulfide-reducing agent, DTT. Gamete Res. 1982;5:19–33. [Google Scholar]
  • 17.Yanagimachi R, Huang TTF, Fleming AD, Kosower NS, Nicolson GL. Dithiothreitol, a disulfide-reducing agent, inhibits capacitation, acrosome reaction, and interaction with eggs by guinea pig spermatozoa. Gamete Res. 1983;7:145–154. [Google Scholar]
  • 18.Ahmadi A, Bongso A, Ng SC. Intracytoplasmic injection of human sperm into the frozen-thawed hamster oocytes. Med Sci Res. 1996;24:693–694. [Google Scholar]
  • 19.Ahmadi A, Bongso A, Ng SC. Intracytoplasmic injection of human sperm into the hamster oocyte (hamster-ICSI assay): As a test for fertilizing capacity of the severe male factor sperm. J Assist Reprod Genet. 1996;13:647–651. doi: 10.1007/BF02069643. [DOI] [PubMed] [Google Scholar]
  • 20.Ahmadi A, Bongso A, Ng SC. Induction of acrosome reaction in human sperm by exposing to an electrical field. Arch Androl. 1997;38:57–65. doi: 10.3109/01485019708988532. [DOI] [PubMed] [Google Scholar]
  • 21.Ahmadi A, Ng SC. Single sperm curling (SSC) test, a modified hypo-osmotic swelling test, as a potential technique for selection of viable sperm in ICSI procedure. Fertil Steril. 1997;68:346–350. doi: 10.1016/s0015-0282(97)81527-0. [DOI] [PubMed] [Google Scholar]
  • 22.Kistler WS, Geroch ME, Williams-Ashman HG. Specific basic proteins from mammalian testes. Isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem. 1973;248:4532–4543. [PubMed] [Google Scholar]
  • 23.Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: Quantitative isolation and partial characterization. Biochemistry. 1977;16:4074–4080. doi: 10.1021/bi00637a021. [DOI] [PubMed] [Google Scholar]
  • 24.Manfoort CH, Schiphof R, Ruzun TH, Steyn-Parve EP. Amino acid composition and carboxyl-terminal structure of some basic chromosomal proteins of mammalian spermatozoa. Biochim Biophys Acta. 1973;322:173–177. doi: 10.1016/0005-2795(73)90189-x. [DOI] [PubMed] [Google Scholar]
  • 25.Pagany EC, Corzett M, Weston S, Balhorn R. DNA and protein content of mouse sperm. Implications regarding sperm chromatine structure. Exp Cell Res. 1981;136:127–136. doi: 10.1016/0014-4827(81)90044-6. [DOI] [PubMed] [Google Scholar]
  • 26.Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93:298–305. doi: 10.1083/jcb.93.2.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: Comparison with somatic cells. Biol Reprod. 1991;44:569–574. doi: 10.1095/biolreprod44.4.569. [DOI] [PubMed] [Google Scholar]
  • 28.Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization and early development. Int Rev Cytol. 1986;105:1–65. doi: 10.1016/s0074-7696(08)61061-x. [DOI] [PubMed] [Google Scholar]
  • 29.Perreault SD, Naish SJ, Zirkin BR. The timing of hamster sperm nuclear decondensation and male pronucleus formation is related to spem nuclear disulfide bond content. Biol Reprod. 1987;36:239–244. doi: 10.1095/biolreprod36.1.239. [DOI] [PubMed] [Google Scholar]
  • 30.Yanagimachi R, Noda YD. Electron microscope studies of sperm incorporation into the golden hamster egg. Am J Anat. 1970;128:429–462. doi: 10.1002/aja.1001280404. [DOI] [PubMed] [Google Scholar]
  • 31.Rigler R, Killander D, Bolund L, Ringertz NR. Cytochemical characterization of deoxyribonucleoprotein in individual cell nuclei. Exp Cell Res. 1969;55:215–224. doi: 10.1016/0014-4827(69)90483-2. [DOI] [PubMed] [Google Scholar]
  • 32.Darzynkiwicz Z, Traganos F, Sharpless T, Melamed MR. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res. 1975;90:411–428. doi: 10.1016/0014-4827(75)90331-6. [DOI] [PubMed] [Google Scholar]
  • 33.Ichimura S. Differences in the red fluorescence of acridine orange bound to single strand RNA and DNA. Biopolymers. 1975;14:1033–1047. doi: 10.1002/bip.1975.360140512. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES