Abstract
Model systems implementing various approaches to immortalize cells have led toward further understanding of replicative senescence and carcinogenesis. Human diploid cells have a limited life span, termed replicative senescence. Because cells are terminally growth arrested during replicative senescence, it has been suggested that it acts as a tumor suppression mechanism as tumor cells exhibit an indefinite life span and are immortal. The generation of immortal cells lines, by the introduction of SV40 and human papillomavirus (HPV) sequences into cells, has provided invaluable tools to dissect the mechanisms of immortalization. We have developed matched sets of nonimmortal and immortal SV40 cell lines which have been useful in the identification of novel growth suppressor genes (SEN6) as well as providing a model system for the study of processes such as cellular aging, apoptosis, and telomere stabilization. Thus, their continued use is anticipated to lead to insights into other processes, which are effected by the altered expression of oncogenes and growth suppressors.
Full Text
The Full Text of this article is available as a PDF (432.1 KB).
References
- 1.Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
- 2.Goldstein S. Replicative senescence: The human fibroblast comes of age. Science. 1990;249:1129–1133. doi: 10.1126/science.2204114. [DOI] [PubMed] [Google Scholar]
- 3.Steinberg M.L., Defendi V. Altered pattern of growth and differentiation in human keratinocytes infected by SV40. Proc. Natl. Acad. Sci. USA. 1979;76:801–805. doi: 10.1073/pnas.76.2.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Neufeld D.S., Ripley S., Henderson A., Ozer H.L. Immortalization of human fibroblasts transformed by origin-defective SV40. Mol. Cell. Biol. 1987;7:2794–2802. doi: 10.1128/mcb.7.8.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16. Cell. 1997;88:593–602. doi: 10.1016/S0092-8674(00)81902-9. [DOI] [PubMed] [Google Scholar]
- 6.West M.D., Pereira-Smith O.M., Smith J.R. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp. Cell Res. 1989;184:138–147. doi: 10.1016/0014-4827(89)90372-8. [DOI] [PubMed] [Google Scholar]
- 7.Wang E. Senescent human fibroblasts resist programmed cell death and failure to suppress bcl-2 is involved. Cancer Res. 1995;55:2284–2292. [PubMed] [Google Scholar]
- 8.Afshari C.A., Bivins H.M., Barrett J.C. Utilization of a fos-lacZ plasmid to investigate the activation of c-fos during cellular senescence and okadaic acid-induced apoptosis. J. Gerontol. 1994;49:B263–269. doi: 10.1093/geronj/49.6.b263. [DOI] [PubMed] [Google Scholar]
- 9.Shay J.W., Wright W.E. Quantitation of the frequency of immortalization of normal diploid fibroblasts by SV40 large T-antigen. Exp. Cell. Res. 1989;1874:109–118. doi: 10.1016/0014-4827(89)90369-8. [DOI] [PubMed] [Google Scholar]
- 10.Radna R.L., Caton Y., Jha K.K., Kaplan P., Li G., Traganos F., Ozer H.L. Growth of immortal simian virus 40 tsA-transformed human fibroblasts is temperature dependent. Mol Cell. Biol. 1988;9:3093–3096. doi: 10.1128/mcb.9.7.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Wright W.E., Pereira-Smith O.M., Shay J.W. Reversible cellular senescence: A two-stage model for the immortalization of normal diploid fibroblasts. Mol. Cell. Biol. 1989;9:3088–3092. doi: 10.1128/mcb.9.7.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Lin J.Y., Simmons D.J. The ability of large T-antigen to complex with p53 is necessary for the increased lifespan and partial transformation of human cells by simian virus 40. J. Virol. 1991;65:6447–6453. doi: 10.1128/jvi.65.12.6447-6453.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Weinberg R. The Rb protein and cell cycle control. Cell. 1995;81:323–330. doi: 10.1016/0092-8674(95)90385-2. [DOI] [PubMed] [Google Scholar]
- 14.Hubbard-Smith K., Patsalis P., Pardinas J.R., Jha K.K., Henderson A.S., Ozer H.L. Altered chromosome 6 in immortal human fibroblasts. Mol. Cell. Biol. 1992;12:2. doi: 10.1128/mcb.12.5.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Chen S., Tsao Y., Chen Y., Huang S., Chang J., Wu S. The induction of apoptosis by SV40 T antigen correlates with c-jun overexpression. Virology. 1998;244:521–529. doi: 10.1006/viro.1998.9109. [DOI] [PubMed] [Google Scholar]
- 16.Lenahan M.K., Ozer H.L. Induction of c-myc mediated apoptosis in SV40-transformed rat fibroblasts. Oncogene. 1996;12:1847–1854. [PubMed] [Google Scholar]
- 17.O’Connor R., Kauffman-Zeh A., Liu Y., Lehar S., Evan G.I., Baserga R., Blattner W.A. Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol. 1997;17:427–435. doi: 10.1128/mcb.17.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Pardinas J., Pang Z., Houghton J., Palejwala V., Donnelly R., Hubbard K., Small M.B., Ozer H.L. Differential gene expression in SV40-mediated immortalization of human fibroblasts. J. Cell. Physiol. 1997;171:325–335. doi: 10.1002/(SICI)1097-4652(199706)171:3<325::AID-JCP11>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- 19.Allsopp, RC, Vaziri, H, Patterson, C, Goldstein, S, Younglai, EV, Futcher, AB, Grieder CW, and Harley, CB: Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA, 89: 10114–10118, 1992. [DOI] [PMC free article] [PubMed]
- 20.Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. Extension of lifespan by introduction of telomerase into normal human cells. Science. 1998;279:349–352. doi: 10.1126/science.279.5349.349. [DOI] [PubMed] [Google Scholar]
- 21.Counter, CC, Hahn, WC, Wei, W, Caddle, SD, Beijersbergen, RL, Landsdorp, PM, Sedivy, JM, and Weinber, RA: Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA, 95: 14723–14728, 1998. [DOI] [PMC free article] [PubMed]
- 22.Kiyono T., Foster S.A., Koop J.I., McDougall J.K., Galloway D.A., Klingelhutz A.J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalizate human epithelial cells. Nature. 1998;396:84–88. doi: 10.1038/23962. [DOI] [PubMed] [Google Scholar]
- 23.Small M.B., Hubbard K., Pardinas J., Marcus A.M., Dhanaraj S.M., Sethi K.A. Maintenance of telomeres in SV40-transformed preimmortal and immortal human fibroblasts. J. Cellular Phys. 1996;168:727–736. doi: 10.1002/(SICI)1097-4652(199609)168:3<727::AID-JCP26>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- 24.Brian T.M., Englezou A., Gupta J., Bachetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Blasco M.A., Lee H.W., Hande M.R., Samper E., Lansdorp P.M., DePinho R.A., Greider C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91:25–34. doi: 10.1016/S0092-8674(01)80006-4. [DOI] [PubMed] [Google Scholar]
- 26.Sedivy J.M. Can ends justify the means? Telomeres and the mechanism of replicative senescence and immortalization in mammalian cells. Proc. Natl. Acad. Sci. USA. 1998;95:9078–9081. doi: 10.1073/pnas.95.16.9078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Berube N.G., Smith J.R., Pereira-Smith O.M. The genetics of cellular senescence. Am. J. Hum. Genet. 1998;62:1015–1019. doi: 10.1086/301848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Sandhu A.K., Hubbard K., Kaur G.P., Jha K.K., Ozer H.L., Athwal R.S. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc. Natl. Acad. Sc. USA. 1994;91:5498–5502. doi: 10.1073/pnas.91.12.5498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Banga S.S., Kim S.-H., Hubbard K., Dasgupta T., Jha K.K., Patsalis P., Hauptschein R., Gamberi B., Dalla-Favera R., Kraemer P., Ozer H.L. SEN6, a locus for SV40-mediated immortalization of human cells, maps to 6q26–27. Oncogene. 1997;14:313–321. doi: 10.1038/sj.onc.1200842. [DOI] [PubMed] [Google Scholar]
- 30.Mandai K., Nakanishi H., Satoh A., Obaishi H., Wada M., Nishioka H., Itoh M., Mizoguchi A., Aoki T., Fujimoto T., Matsuda Y., Tsukita S., Takai Y. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol. 1997;139:517–528. doi: 10.1083/jcb.139.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Hock B., Bohme B., Karn T., Yamamoto T., Kaibuchi K., Holtrich U., Holland S., Pawson T., Rubsamen-Waigmann H., Strebhardt K. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl. Acad. Sci. USA. 1998;95:9779–9784. doi: 10.1073/pnas.95.17.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]