Abstract
The single gene mutation of Ames dwarf mice increases their maximum longevity by around 40% but the mechanism(s) responsible for this effect remain to be identified. This animal model thus offers a unique possibility of testing the mitochondrial theory of aging. In this investigation, oxidative damage to mitochondrial DNA (mtDNA) was measured for the first time in dwarf and wild type mice of both sexes. In the brain, 8-oxo,7,8-dihydro-2′-deoxyguanosine (8-oxodG) in mtDNA was significantly lower in dwarfs than in their controls both in males (by 32%) and in females (by 36%). The heart of male dwarfs also showed significantly lower mtDNA 8-oxodG levels (30% decrease) than the heart of male wild type mice, whereas no differences were found in the heart of females. The results, taken together, indicate that the single gene mutation of Ames dwarfs lowers oxidative damage to mtDNA especially in the brain, an organ of utmost relevance for aging. Together with the previous evidence for relatively lower level of oxidative damage to mtDNA in both long-lived and caloric restricted animals, these findings suggest that lowering of oxidative damage to mtDNA is a common mechanism of life extension in these three different mammalian models.
Full Text
The Full Text of this article is available as a PDF (355.8 KB).
References
- 1.Brown-Borg H.M., Borg K.E., Meliska C.J., Bartke A. Dwarf mice and the aging process. Nature. 1996;384:33. doi: 10.1038/384033a0. [DOI] [PubMed] [Google Scholar]
- 2.Flurkey K., Papaconstantinou J., Miller R.A., Harrison D.E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. PNAS. 2001;98:6736–6741. doi: 10.1073/pnas.111158898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bartke A., Brown-Borg H., Mattison J., Kinney B., Hauck S., Wright C. Prolonged longevity of hypopititary dwarf mice. Exp. Gerontol. 2001;36:21–28. doi: 10.1016/S0531-5565(00)00205-9. [DOI] [PubMed] [Google Scholar]
- 4.Napiwotzki J., Reith A., Becker A., Leist S., Kadenbach B. Quantitative analysis of mutations of mitochondrial DNA during human aging. In: Cadenas E., Packer L., editors. Understanding the Process of Aging. New York: Marcel Dekker; 1999. pp. 251–264. [Google Scholar]
- 5.Richter Ch., Park J.W., Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 1988;85:6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Barja G., Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB Journal. 2000;14:312–318. doi: 10.1096/fasebj.14.2.312. [DOI] [PubMed] [Google Scholar]
- 7.Gredilla R., Sanz A., Lopez-Torres M., Barja G. Caloric restriction decreases mitochondrial free radical generation at Complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB Journal. 2001;15:1589–1591. doi: 10.1096/fj.00-0764fje. [DOI] [PubMed] [Google Scholar]
- 8.Mattison J.A., Wright C., Bronson R.T., Roth G.S., Ingram D.T., Bartke A. Studies of aging in Ames dwarf mice: Effects of caloric restricition. J. Amer. Aging Assoc. 2000;23:9–16. doi: 10.1007/s11357-000-0002-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bartke A., Wright J.C., Mattison J.A., Ingram D.K., Miller R.A., Roth G. Longevity: extending the lifespan of long-lived mice. Nature. 2001;414:412. doi: 10.1038/35106646. [DOI] [PubMed] [Google Scholar]
- 10.Brown-Borg H.M., Bode A.M., Bartke A. Antioxidative mechanisms and plasma growth hormone levels. Endocrine. 1999;11:41–48. doi: 10.1385/ENDO:11:1:41. [DOI] [PubMed] [Google Scholar]
- 11.Hauck S.J., Bartke A. Effects of growth hormone on hypotalamic catalase and Cu/Zn superoxide dismutase. Free Rad. Biol. Med. 2000;28:970–978. doi: 10.1016/S0891-5849(00)00186-6. [DOI] [PubMed] [Google Scholar]
- 12.Carlson J.C., Bharadwaj R., Bartke A. Oxidative stress in hypopituitary dwarf mice and in transgenic mice overexpressing human and bovine GH. Age-Media. 1999;22:181–186. doi: 10.1007/s11357-999-0021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Brown-Borg H., Johnson W.T., Rakoczky S., Romanick M. Mitochondrial oxidant generation and oxidative damage in Ames dwarf and GH transgenic mice. J. Amer. Aging Assoc. 2001;24:85–96. doi: 10.1007/s11357-001-0012-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Collins A.R., Gedik C.M., Olmedilla B., Southon S., Bellizzi M. Oxidative damage measured in human lymphocytes: large differences between sexes and between countries, and correlations with heart disease mortality rates. FASEB J. 1998;12:1397–1400. [PubMed] [Google Scholar]
- 15.Chen L., Bowen P.E., Berzy D., Aryee F., Sapuntzakis M., Riley R.E. Diet modification affects DNA oxidative damage in healthy humans. Free Rad. Biol. Med. 1999;26:695–703. doi: 10.1016/S0891-5849(98)00254-8. [DOI] [PubMed] [Google Scholar]
- 16.Loft S., Ewertz M., Tjonneland A., Overvad K., Poulsen H.E. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans-influence of smoking, gender and body mass index. Carcinogenesis. 1992;13:2241–2247. doi: 10.1093/carcin/13.12.2241. [DOI] [PubMed] [Google Scholar]
- 17.Asdell S.A., Doornenbal H., Joshi S.R., Sperling G.A. The effects of sex steroid hormones upon longevity in rats. J. Reprod. Fert. 1967;14:113–120. doi: 10.1530/jrf.0.0140113. [DOI] [PubMed] [Google Scholar]
- 18.Sastre J., Borras C., García-Sala D., Lloret A., Pallardo F.V., Viña J. Mitochondrial damage in aging and apoptosis. Ann. New York Acad. Sci. 2002;959:448–451. doi: 10.1111/j.1749-6632.2002.tb02114.x. [DOI] [PubMed] [Google Scholar]
- 19.Borg K.E., Brown-Borg H.M., Bartke A. Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstresses Ames dwarf mouse. Proc. Soc. Exper. Biol. Med. 1995;210:126–133. doi: 10.3181/00379727-210-43931. [DOI] [PubMed] [Google Scholar]
- 20.Dominici F.P., Hauck S., Argentino D.P., Bartke A., Turyn D. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J. Endocrinol. 2002;173:81–94. doi: 10.1677/joe.0.1730081. [DOI] [PubMed] [Google Scholar]
- 21.Barja G. Mitochondrial Free Radical Generation: Sites of production in states 4 and 3, specificity and relationship with aging rate. J. Bioenerg. Biomembr. 1999;31:347–366. doi: 10.1023/A:1005427919188. [DOI] [PubMed] [Google Scholar]
- 22.Breese C.R., Ingram R.L., Sonntag W.E. Influence of age and long-term dietary restriction on plasma insulin-like growth factor (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. J. Gerontol. Biol. Sci. 1991;46:B180–B1877. doi: 10.1093/geronj/46.5.b180. [DOI] [PubMed] [Google Scholar]
- 23.Kenyon C. A conserved regulatory system for aging. Cell. 2001;105:165–168. doi: 10.1016/S0092-8674(01)00306-3. [DOI] [PubMed] [Google Scholar]
- 24.Latorre A., Moya A., Ayala A. Evolution of mitochondrial DNA in Drosophila suboscura. Proc. Natl. Acad. Sci. USA. 1986;83:8649–8653. doi: 10.1073/pnas.83.22.8649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Loft S., Poulsen H.E. Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods in Enzymology. 1999;300:166–184. doi: 10.1016/S0076-6879(99)00124-X. [DOI] [PubMed] [Google Scholar]