Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2002 Jan;25(1):3–9. doi: 10.1007/s11357-002-0001-4

Survival and cell mediated immunity after burn injury in aged mice

Elizabeth J Kovacs 1,2,3,4,, Kristy A Grabowski 2, Lisa A Duffner 2, Timothy P Plackett 2, Meredith S Gregory 2
PMCID: PMC3455289  PMID: 23604885

Abstract

The elderly are less able to survive burn injury than young healthy individuals. Regardless of age, burn victims often succumb to secondary infections rather than the primary injury. Since immune responses diminish with age, it is likely that aged individuals are predisposed to a poor outcome by virtue of their weak immune system. Elevated production of macrophage-derived mediators, including interleukin-6 (IL-6), may lead to post-injury immunosuppression in young adults. Healthy aged individuals produce high circulating levels of these mediators; therefore, the combination of the age and burn trauma could further suppress immune responses and contribute to the rapid demise of aged burn patients. Herein, the effects of age and burn trauma using a murine scald injury model were examined. After injury, aged mice are less likely to survive, are unable to mount immune responses, and produce more IL-6 when compared to young adult mice given the same size injuries. Enhancing our understanding of the mechanisms responsible for regulating cell-mediated immune responses after injury could lead to the development of therapies designed to treat aged burn patients.

Full Text

The Full Text of this article is available as a PDF (646.6 KB).

References

  • 1.Alexander J.W. Mechanisms of immunologic suppression in burn injury. J. Trauma. 1990;30(Suppl.):S70–S75. doi: 10.1097/00005373-199012001-00017. [DOI] [PubMed] [Google Scholar]
  • 2.Chakravarti B., Abraham G.N. Aging and T cell mediated immunity. Mech. Ageing Dev. 1999;108:183–206. doi: 10.1016/S0047-6374(99)00009-3. [DOI] [PubMed] [Google Scholar]
  • 3.Daynes R.A., Areano B.A., Ershler W.B., Maloney G., Li G.Z., Ryu S.Y. Altered regulation of IL-6 production with normal aging. J. Immunol. 1993;150:5219–5230. [PubMed] [Google Scholar]
  • 4.Deitch E.A., Clothier J. Burns in the elderly: an early surgical approach. J. Trauma. 1983;23:891–894. [PubMed] [Google Scholar]
  • 5.Doria G., Frasca D. Regulation of cytokine production in aging. Annals N.Y. Acad. Sci. 1994;741:299–304. doi: 10.1111/j.1749-6632.1994.tb23113.x. [DOI] [PubMed] [Google Scholar]
  • 6.Drost A.C., Burleson D.G., Cioff W.G., Mason A.D., Pruitt B.A. Plasma cytokines following thermal injury and their relationship with patient mortality, burn size and time post injury. J. Trauma. 1993;35:335–339. doi: 10.1097/00005373-199309000-00001. [DOI] [PubMed] [Google Scholar]
  • 7.Ershler W.B., Sun W.H., Binkley N. The role of interleukin-6 in certain age related diseases. Drugs Agents. 1994;5:358–365. doi: 10.2165/00002512-199405050-00005. [DOI] [PubMed] [Google Scholar]
  • 8.Ershler W.B., Keller E.T. Age-associated increased interleukin-6 gene expression, late-life disease, and frailty. Ann. Rev. Med. 2000;51:245–270. doi: 10.1146/annurev.med.51.1.245. [DOI] [PubMed] [Google Scholar]
  • 9.Faist E., Schinkel C., Zimmer S. Update on the mechanisms of immune suppression of injury and immune modulation. World J. Surg. 1996;20:454–459. doi: 10.1007/s002689900071. [DOI] [PubMed] [Google Scholar]
  • 10.Fagiolo U., Cossarizza A., Scala E., Fanales-Belasio A., Ortolani C., Cozzi E., Monti S., Franceschi C., Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur. J. Immunol. 1993;23:2375–2378. doi: 10.1002/eji.1830230950. [DOI] [PubMed] [Google Scholar]
  • 11.Faunce D.E., Gregory M.S., Kovacs E.J. The effects of acute ethanol exposure on cellular immune responses in a murine model of thermal injury. J. Leukoc. Biol. 1997;62:733–740. doi: 10.1002/jlb.62.6.733. [DOI] [PubMed] [Google Scholar]
  • 12.Faunce D.E., Gregory M.S., Kovacs E.J. Acute ethanol exposure prior to thermal injury results in decreased T cell responses mediated in part by increased production of IL-6. Shock. 1998;10:135–140. doi: 10.1097/00024382-199808000-00009. [DOI] [PubMed] [Google Scholar]
  • 13.Gennari R., Alexander J.W., Pyles T., Hartman S., Ogle C.K. 1994. Effects of anti-murine interleukin-6 on bacterial translocation during gut-derived sepsis. Arch. Surg. 1994;129:1191–1197. doi: 10.1001/archsurg.1994.01420350089012. [DOI] [PubMed] [Google Scholar]
  • 14.Gennari R., Alexander J.W. Anti-interleukin-6 anti-body treatment improves survival during gut-derived sepsis in a time-dependent manner by enhancing host defense. Crit. Care Med. 1995;23:1945–1953. doi: 10.1097/00003246-199512000-00002. [DOI] [PubMed] [Google Scholar]
  • 15.Ginaldi L., De Martinis M., D’Ostilio A., Marini L., Loreto M.F., Corsi M.P., Quaglino D. The immune system in elderly: II. Specific cellular immunity. Immunol. Res. 1999;20:109–115. doi: 10.1007/BF02786467. [DOI] [PubMed] [Google Scholar]
  • 16.Gregory M.S., Faunce D.E., Duffner L.A., Kovacs E.J. The gender difference in cell mediated immunity following thermal injury is controlled, in part, by elevated levels of interleukin-6. J. Leukoc. Biol. 2000;67:319–326. [PubMed] [Google Scholar]
  • 17.Gregory M.S., Duffner L.A., Hahn E.L., Tai H.-H., Faunce D.E., Kovacs E. J. Differential production of prostaglandin E 2 in male and female mice subjected to thermal injury contributes to the gender difference in immune function: Possible role for 15-hydroxyprostaglandin dehydrogenase. Cell. Immunol. 2000;205:94–102. doi: 10.1006/cimm.2000.1721. [DOI] [PubMed] [Google Scholar]
  • 18.Griffiths R.W., Laing J.E. Burn injury in the aged patient. Burns. 1981;7:365–369. doi: 10.1016/0305-4179(81)90012-7. [DOI] [Google Scholar]
  • 19.Haynes L., Linton P.L., Eaton S.M., Tonkonogy S.L., Swain S.L. Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J. Exp. Med. 1999;190:1013–1024. doi: 10.1084/jem.190.7.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kahlke V., Angele M.K., Ayala A., Schwacha M.G., Cioff W.G., Bland K.I., Chaudry I.H. Immune dysfunction following trauma-hemorrhage: influence of gender and age. Cytokine. 2000;12:69–74. doi: 10.1006/cyto.1999.0511. [DOI] [PubMed] [Google Scholar]
  • 21.Kowal-Vern A., Walenga J.M., Hoppensteadt D., Sharp-Pucci M., Gamelli R.L. Interleukin-2 and interleukin-6 in relation to burn wound size in the acute phase of thermal injury. J. Am. Coll. Surg. 1994;178:357–362. [PubMed] [Google Scholar]
  • 22.Lederer J.A., Rodrick M.L., Mannick J.A. The effects of injury on the adaptive immune response. Shock. 1999;11:153–159. doi: 10.1097/00024382-199903000-00001. [DOI] [PubMed] [Google Scholar]
  • 23.Linn B.S. Age differences in the severity and outcome of burns. J. Am. Geriatrics Society. 1980;3:118–123. doi: 10.1111/j.1532-5415.1980.tb00244.x. [DOI] [PubMed] [Google Scholar]
  • 24.Mandrup-Poulsen T., Wogensen L.D., Jensen M., Svensson P., Nilsson P., Emdal T., Molvig J., Dinarello C.A., Nerup J. Circulating interleukin-1 receptor antagonist concentrations are increased in adult patients with thermal injury. Crit. Care Med. 1995;23:26–33. doi: 10.1097/00003246-199501000-00008. [DOI] [PubMed] [Google Scholar]
  • 25.Messingham K.A.N., Shirazi M., Duffner L.A., Duffner, Kovacs E.J. Testosterone blockade restores immune function in male mice subjected to thermal injury. J. Endocrinol. 2001;169:299–308. doi: 10.1677/joe.0.1690299. [DOI] [PubMed] [Google Scholar]
  • 26.Messingham, KAN, Heinrich, SA, Duffner, LA, Kovacs, EJ: Estrogen restores cellular immunity in injured male mice via suppression of IL-6 production. J. Leukoc. Biol, in press, 2001b. [PubMed]
  • 27.Mester M., Carter E.A., Tompkins R.G., Gelfand J.A., Dinarello C.A., Burke J.F., Clark B.D. Thermal injury induces very early production of interleukin-1 in the rat by mechanisms other than endotoxemia. Surg. 1994;115:588–596. [PubMed] [Google Scholar]
  • 28.Miller R.A. Aging and immune function. Inter. Rev. Cytol. 1991;124:187–215. doi: 10.1016/S0074-7696(08)61527-2. [DOI] [PubMed] [Google Scholar]
  • 29.Miller C.L., Baker C.C. Changes in lymphocyte activity after thermal injury. J. Clin. Invest. 1979;63:202–210. doi: 10.1172/JCI109290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ogle C.K., Mao J.X., Wu J.Z., Ogle J.D., Alexander J.W. The production of tumor necrosis factor, interleukin-1, interleukin-6, and prostaglandin E2 by isolated enterocytes and gut macrophages: effect of lipopolysaccharide and thermal injury. J. Burn Care Rehabil. 1994;15:470–447. [PubMed] [Google Scholar]
  • 31.O’Riordain M.G., Collins K.M., Pilz M., Saporoschetz I.B., Mannick J.A., Roderick M.L. Modulation of macrophage hyperactivity improve survival in a burn-sepsis model. Arch. Surg. 1992;127:152–157. doi: 10.1001/archsurg.1992.01420020034005. [DOI] [PubMed] [Google Scholar]
  • 32.O’Sullivan S.T., O’Connor T.P.F. Immunosuppression following thermal injury: the pathogenesis of immunodysfunction. Br. J. Plast. Surg. 1997;50:615–623. doi: 10.1016/S0007-1226(97)90507-5. [DOI] [PubMed] [Google Scholar]
  • 33.O’Sullivan S.T., Lederer J.A., Horgan A.F., Chin D.H.L., Mannick J.A., Rodrick M.L. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg. 1995;222:482–490. doi: 10.1097/00000658-199522240-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Pawelec G., Solana R., Remarque E., Mariani E. Impact of aging on innate immunity. J. Leuk. Biol. 1998;64:703–712. doi: 10.1002/jlb.64.6.703. [DOI] [PubMed] [Google Scholar]
  • 35.Pruitt B.A., Tumcusch W.J., Mason A.D. Mortality in 1,100 consecutive burns treated at a burn unit. Ann. Surg. 1964;159:396–401. doi: 10.1097/00000658-196403000-00011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Pruitt B.A., Jr. Infection and the burn patient. Br. J. Surg. 1990;77:1081–1092. doi: 10.1002/bjs.1800771002. [DOI] [PubMed] [Google Scholar]
  • 37.Ramzy P.I., Barret J.P., Herndon D.N. Thermal injury. Crit. Care Clin. 1999;15:333–352. doi: 10.1016/s0749-0704(05)70058-0. [DOI] [PubMed] [Google Scholar]
  • 38.Rittenbury M.S., Schmidt F.H., Maddox R.W., Beazley W., 3rd, Ham W. a., Jr, Hayes B.W., Jr Factors significantly affecting mortality in the burned patient. J. Trauma. 1965;5:587–600. doi: 10.1097/00005373-196509000-00003. [DOI] [PubMed] [Google Scholar]
  • 39.Rodriguez J.L., Miller C.G., Garner W.L., Till O.G., Guerrero P., Moore N.P., Corridore M., Normolle D.P., Smith D.L., Remick D.G. Correlation of the local and systemic cytokine response with clinical outcome following thermal injury. J. Trauma. 1993;34:684–694. doi: 10.1097/00005373-199305000-00011. [DOI] [PubMed] [Google Scholar]
  • 40.Saltzman R.L., Peterson P.K. Immunodeficiency of the elderly. Rev. Infect. Dis. 1987;9:1127–1139. doi: 10.1093/clinids/9.6.1127. [DOI] [PubMed] [Google Scholar]
  • 41.Schluter B., Koenig B., Bergmann U. Interleukin-6: a potential mediator of lethal sepsis after major thermal trauma. J. Trauma. 1991;31:1663–1670. doi: 10.1097/00005373-199112000-00017. [DOI] [PubMed] [Google Scholar]
  • 42.Schwacha M.G., Somers S.D. Thermal injury-induced immunosuppression in mice: the role of macrophage-derived reactive nitrogen intermediates. J. Leukoc. Biol. 1998;63:51–53. doi: 10.1002/jlb.63.1.51. [DOI] [PubMed] [Google Scholar]
  • 43.Spector W.S. Handbook of Biological Data. Philadelphia, PA: Saunders Publications; 1956. p. 157. [Google Scholar]
  • 44.Tran D.D., Groeneveld A.B.J., van der Meulen J., Nauta J.J., Strack van Schijndel J.R., Thijs L.G. Age, chronic disease, sepsis, multi-organ system failure and mortality in a medical intensive care unit. Crit. Care Med. 1990;18:474–479. doi: 10.1097/00003246-199005000-00002. [DOI] [PubMed] [Google Scholar]
  • 45.Weigle W.O. Effects of aging on the immune system. Hosp. Prac. 1989;24:112–119. doi: 10.1080/21548331.1989.11703827. [DOI] [PubMed] [Google Scholar]
  • 46.Winkelstein A. What are the immunological alterations induces by burn injury? J. Trauma. 1984;24(9Suppl):S72–S83. doi: 10.1097/00005373-198409001-00005. [DOI] [PubMed] [Google Scholar]
  • 47.Wood J.J., Roderick M.L., O’Mahony B.J., Palder S.B., Sarporoschetz I., D’Eon P., Mannick J.A. Inadequate interleukin-2 production: a fundamental immunological deficiency in patients with major burns. Ann. Surg. 1984;200:311–320. doi: 10.1097/00000658-198409000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wood J.J., Grbic J.T., Roderick M.L., Jordan A., Mannick J.A. Suppression of interleukin-2 production in an animal model of thermal injury is related to prostaglandin synthesis. Arch. Surg. 1987;122:179–184. doi: 10.1001/archsurg.1987.01400140061007. [DOI] [PubMed] [Google Scholar]
  • 49.Zedler S., Faist E., Ostermeier B., von Donnersmarck G.H., Schildberg F.W. Postburn constitutional changes in T-cell reactivity occur in CD8+ rather than in CD4+ cells. J. Trauma. 1997;42:872–880. doi: 10.1097/00005373-199705000-00018. [DOI] [PubMed] [Google Scholar]
  • 50.Zhou D., Munster M.A., Winchurch R.A. Pathologic concentrations of interleukin-6 inhibit T cell responses via induction of activation of TGF- FASEB J. 1991;5:2582–2585. doi: 10.1096/fasebj.5.11.1868982. [DOI] [PubMed] [Google Scholar]
  • 51.Zhou D., Munster A.M., Winchurch R.A. Inhibitory effect of interleukin-6 on immunity: Possible implications in burn patients. Arch. Surg. 1992;127:65–69. doi: 10.1001/archsurg.1992.01420010079011. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES