Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2001 Oct;24(4):179–186. doi: 10.1007/s11357-001-0019-z

Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabdms elegans; studies of mutation in the AGE-1, PI3 kinase homologue and short-term exposure to hyperoxia

Y Honda 1, S Honda 1,
PMCID: PMC3455294  PMID: 23604883

Abstract

Life span could be modified by genetic or environmental perturbations in Caenorhabditis elegans. Here we show that two extensions of life span are associated with oxidative stress resistance and upregulation of the gene expression of antioxidant enzymes. First, mutations in age-1 gene (PI3 kinase homologue) that confer life span extension, display oxidative stress resistance and increase in the gene expression of sod-3, one of two Mn-superoxide dismutases (SOD) and ctl-1, cytosolic catalase. In this study, these traits appear to be regulated by the following genetic pathway: daf-2 (insulin receptor family)-> daf-18 (PTEN homologue)-> age-1-> daf-16 (Fork head transcription factor family), similar to the genetic pathway for the life span extension. Second, we show that short-term exposure to hyperoxia extends life span slightly but significantly. This treatment increases oxidative stress resistance and the gene expression of three types of SOD isoforms. These results suggest that both of these two life span extensions are closely related with increase in the antioxidant defense function.

Full Text

The Full Text of this article is available as a PDF (859.9 KB).

References

  • 1.Weindruch R.H., Walford R.L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity, and lifetime energy intake. J. Nutr. 1986;116:641–654. doi: 10.1093/jn/116.4.641. [DOI] [PubMed] [Google Scholar]
  • 2.Rockstein M., Chesky J.A., Susman M.L. In: Comparative biology and evolution of aging, The Handbook of the Biology of Aging. Finch C.E., Hayflick L., editors. New York: Van Nostrand Reinhold Company; 1977. pp. 3–34. [Google Scholar]
  • 3.Honda S., Ishii N., Suzuki K., Matsuo M. Oxygen-dependent perturbation of life span and aging rate in the nematode. J. Gerontol. 1993;48:B57–61. doi: 10.1093/geronj/48.2.b57. [DOI] [PubMed] [Google Scholar]
  • 4.Guarente L., Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–262. doi: 10.1038/35041700. [DOI] [PubMed] [Google Scholar]
  • 5.Kimura K.D., Tissenbaum H.A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  • 6.Morris J.Z., Tissenbaum H.A., Ruvkun G.A. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
  • 7.Paradis S., Ailion M., Toker A., Thomas J.H., Ruvkun G.A. PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999;13:1438–1452. doi: 10.1101/gad.13.11.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  • 9.Lin K., Dorman J. B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278:1319–1322. doi: 10.1126/science.278.5341.1319. [DOI] [PubMed] [Google Scholar]
  • 10.Ogg S., Paradis S., Gottlieb S., Patterson G.I., Lee L., Tissenbaum H.A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997;389:994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  • 11.Larsen P.L., Albert P.S., Riddle D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 1995;139:1567–1583. doi: 10.1093/genetics/139.4.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ogg S., Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell. 1998;2:887–893. doi: 10.1016/S1097-2765(00)80303-2. [DOI] [PubMed] [Google Scholar]
  • 13.Gil E.B., Link E.M., Liu L.X., Johnson C.D., Lees J.A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl. Acad. Sci. USA. 1999;96:2925–2930. doi: 10.1073/pnas.96.6.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Rouault J.P., Kuwabara P.E., Sinilnikova O.M., Duret L., Thierry-Mieg D., Billaud M. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr. Biol. 1999;9:329–332. doi: 10.1016/S0960-9822(99)80143-2. [DOI] [PubMed] [Google Scholar]
  • 15.Mihaylova V.T., Borland C.Z., Manjarrez L., Stern M.J., Sun H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl. Acad. Sci. USA. 1999;96:7427–7432. doi: 10.1073/pnas.96.13.7427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Dorman J.B., Albinder B., Shroyer T., Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995;141:1399–1406. doi: 10.1093/genetics/141.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Gregoire F. M., Chomiki N., Kachinskas D., Warden C.H. Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 1998;249:385–390. doi: 10.1006/bbrc.1998.9164. [DOI] [PubMed] [Google Scholar]
  • 18.Kawano T., Ito Y., Ishiguro M., Takuwa K., Nakajima T., Kimura Y. Molecular cloning and characterization of a new insulin / IGF-like peptide of the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 2000;273:431–436. doi: 10.1006/bbrc.2000.2971. [DOI] [PubMed] [Google Scholar]
  • 19.Pierce S.B., Costa M., Wisotzkey R., Devadhar S., Homburger S.A., Buchman A.R., Ferguson K.C., Heller J., Platt D.M., Pasquinelli A.A., Liu L.X., Doberstein S.K., Ruvkun G. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001;15:672–686. doi: 10.1101/gad.867301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Paradis S., Ruvkun G. Caenorhabditis elegans Akt / PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 1998;12:2488–2498. doi: 10.1101/gad.12.16.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Harman D. Aging: Overview. Ann. N. Y. Acad. Sci. 2001;928:1–21. doi: 10.1111/j.1749-6632.2001.tb05631.x. [DOI] [PubMed] [Google Scholar]
  • 22.Beckman K.B., Ames B.N. The free radical theory of aging matures. Physiol. Rev. 1998;78:547–581. doi: 10.1152/physrev.1998.78.2.547. [DOI] [PubMed] [Google Scholar]
  • 23.Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  • 24.Beckman, K.B., and Ames, B.N.: Oxidative decay of DNA. J. Biol. Chem., 272: 19633–19636, 1997. [DOI] [PubMed]
  • 25.Stadtman E.R. Protein oxidation and aging. Science. 1992;257:1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  • 26.Croteau, D.L., and Bohr, V.A.: Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem., 272: 25409–25412, 1997. [DOI] [PubMed]
  • 27.Orr W.C., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  • 28.Parkes T.L., Elia A.J., Dickinson D., Hilliker A.J., Phillips J.P., Boulianne G.L. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genetics. 1998;19:171–174. doi: 10.1038/534. [DOI] [PubMed] [Google Scholar]
  • 29.Honda Y., Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385–1393. [PubMed] [Google Scholar]
  • 30.Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1993;90:8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Giglio M.P., Hunter T., Bannister J.V., Bannister W.H., Hunter G.J. The manganese superoxide dismutase gene of Caenorhabditis elegans. Biochem. Mol. Biol. Int. 1994;33:37–40. [PubMed] [Google Scholar]
  • 32.Suzuki N., Inokuma K., Yasuda K., Ishii N. Cloning, sequencing and mapping of a manganese superoxide dismutase gene of the nematode Caenorhabditis elegans. DNA Res. 1996;3:171–174. doi: 10.1093/dnares/3.3.171. [DOI] [PubMed] [Google Scholar]
  • 33.Hunter, T., Bannister, W.H., and Hunter, G.J.: Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J. Biol. Chem., 272: 28652–28659, 1997. [DOI] [PubMed]
  • 34.Johnson T.E., Hartman P.S. Radiation effects on life span in Caenorhabditis elegans. J Gerontol. 1988;43:B137–141. doi: 10.1093/geronj/43.5.b137. [DOI] [PubMed] [Google Scholar]
  • 35.Lithgow G.J., White T.M., Melov S., Johnson T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA. 1995;92:7540–7544. doi: 10.1073/pnas.92.16.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Honda S., Matsuo M. Lifespan shortening of the nematode Caenorhabditis elegans under higher concentrations of oxygen. Mech, Ageing Dev. 1992;63:235–246. doi: 10.1016/0047-6374(92)90002-U. [DOI] [PubMed] [Google Scholar]
  • 37.Darr D., Fridovich I. Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic. Biol. Med. 1995;18:195–201. doi: 10.1016/0891-5849(94)00118-4. [DOI] [PubMed] [Google Scholar]
  • 38.Hassan H.M., Fridovich I. Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J. Biol. Chem. 1978;253:8143–8148. [PubMed] [Google Scholar]
  • 39.Taub J., Lau, Lau J.F., Ma C., Hahn J.H., Hoque R., Rothblatt J., Chalfie M. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-2 and clk-1 mutants. Nature. 1999;399:162–166. doi: 10.1038/20208. [DOI] [PubMed] [Google Scholar]
  • 40.Johnson T.E. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science. 1990;249:908–912. doi: 10.1126/science.2392681. [DOI] [PubMed] [Google Scholar]
  • 41.Vanfleteren J.R. Oxidative stress and aging in Caenorhabditis elegans. Biochem J. 1993;292:605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Maehama, T., and Dixon, J.E.: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem., 273:13375–13378, 1998. [DOI] [PubMed]
  • 43.Ishii N., Fujii M., Hartman P.S., Tsuda M., Yasuda K., Senoo-Matsuda N., Yanase S., Ayusawa D., Suzuki K. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature. 1998;394:694–697. doi: 10.1038/29331. [DOI] [PubMed] [Google Scholar]
  • 44.Hartman P., Childress, Childress E., Beyer T. Nematode development is inhibited by methyl viologen and high oxygen concentrations at a rate inversely proportional to life span. J Gerontol. 1995;50:B322–326. doi: 10.1093/gerona/50a.6.b322. [DOI] [PubMed] [Google Scholar]
  • 45.Melov S., Ravenscroft J., Malik S., Gill M.S., Walker D.W., Clayton P.E., Wallace D.C., Malfroy B., Doctrow S.R., Lithgow G.J. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000;289:1567–1569. doi: 10.1126/science.289.5484.1567. [DOI] [PubMed] [Google Scholar]
  • 46.Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sacher G.A. Life table modifications and life prolongation. In: Finch C.E., Hayflick L., editors. Handbook of the biology of aging. New York: Van Nostrand Reinhold; 1977. pp. 582–638. [Google Scholar]
  • 48.Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. [DOI] [PubMed] [Google Scholar]
  • 49.Sambrook J., Andfritsch E., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Lab. Press; 1989. [Google Scholar]
  • 50.Wilson D.L. A comparison of methods for estimating mortality parameters from survival data. Mec. Age. Devel. 1993;66:269–281. doi: 10.1016/0047-6374(93)90014-I. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES