Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2001 Oct;24(4):163–171. doi: 10.1007/s11357-001-0017-1

The effect of lipopolysaccharide on enhanced inflammatory process with age: Modulation of NF-κB

Hyun Joo Kwon 1, Bo Kyung Sung 1, Jung Won Kim 1, Ji Hyeon Lee 1, Nam Deuk Kim 1, Mi Ae Yoo 2, Ho Sung Kang 2, Hyung Suk Baek 2, Song Ja Bae 3, Jae Sue Choi 4, Ryoya Takahashi 4, Sataro Goto 5, Hae Young Chung 1,6,
PMCID: PMC3455295  PMID: 23604881

Abstract

Oxidative stress is thought to be a causative factor for age-related damage in a wide variety of cellular constituents that can lead to dysfunction and various pathological conditions, including the inflammatory process. At the molecular level, the redox-sensitive transcription factor, NF-κB plays a key role in the regulation of the inflammatory process, along with cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). We studied the mechanism underlying the modulation of the inflammatory reaction with age by investigating NF-κB activation and the expression of COX-2, iNOS, and cytokines genes in hepatic tissues isolated from young and old rats. We expanded our investigation of these factors in rats injected with the inflammatory activator, lipopolysaccharide (LPS). Data showed that NF-κB activity was up-regulated with age and was further enhanced by LPS injection, indicating an increased susceptibility and sensitivity to the inflammatory stimulus with age. To explore further the molecular events leading to NF-κB activation, we investigated the inhibitory component of NF-κB complex, IκB. Cytosolic IκBα, but not IκBβ, was significantly decreased in both old and LPS-treated rats, signifying the enhanced migration of cytosolic NF-κB complex into the nucleus following dissociation from the inhibitor. The appearance of the polypeptide, p65, as determined in the nucleus, corresponded with the change in IκBα, providing further supporting evidence for the molecular process involved in NF-κB activation. Our additional investigation of two proinflammatory-related enzymes, COX-2 and iNOS, and three cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α, clearly showed aged-related increases, in corroboration with the NF-κB activation. Our results demonstrated that LPS injection caused the enhanced gene expression of inducible proinflammatory proteins, COX-2 and iNOS through NF-κB activation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  • 1.Yu B. P. Aging and oxidative stress: modulation by dietary restriction. Free Rad. Biol. Med. 1996;21:651–668. doi: 10.1016/0891-5849(96)00162-1. [DOI] [PubMed] [Google Scholar]
  • 2.Harman D. Free radical theory of aging. Mutat. Res. 1992;275:257–266. doi: 10.1016/0921-8734(92)90030-s. [DOI] [PubMed] [Google Scholar]
  • 3.Johnson F. B., Sinclair A. S., Guarente L. Molecular biology of aging. Cell. 1999;96:291–302. doi: 10.1016/S0092-8674(00)80567-X. [DOI] [PubMed] [Google Scholar]
  • 4.Chung H.Y., Kim H.J., Jung K.J., Yoon J.S., Yoo M.A., Kim K.W., Yu B.P. The imflammatory process in aging. Rev. Clin. Gerontol. 2000;10:207–222. doi: 10.1017/S0959259800010327. [DOI] [Google Scholar]
  • 5.Ambrosio G., Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am. Heart J. 1999;138:69–75. doi: 10.1016/S0002-8703(99)70323-6. [DOI] [PubMed] [Google Scholar]
  • 6.Miller R. A. The aging immune system: primer and prospectus. Science. 1996;273:70–74. doi: 10.1126/science.273.5271.70. [DOI] [PubMed] [Google Scholar]
  • 7.Martin G. R., Banner D. B., Holbrook N. J. Aging-causes and defenses. Annu. Rev. Med. 1993;44:419–429. doi: 10.1146/annurev.me.44.020193.002223. [DOI] [PubMed] [Google Scholar]
  • 8.Makinodan T., Jmes S. J., Inamizu T., Chang M. P. Immunologic basis for susceptibility to infection in the aged. Gerontology. 1984;30:279–289. doi: 10.1159/000212647. [DOI] [PubMed] [Google Scholar]
  • 9.Roubenoff R., Harris T. B., Abad L. W., Wilson P. W., Dallal G. E., Dinarello C. A. Monocyte cytokine production in an elderly population: effect of age and inflammation. J. Gerontol. A Biol. Sci. Med. 1998;53:M20–M26. doi: 10.1093/gerona/53a.1.m20. [DOI] [PubMed] [Google Scholar]
  • 10.Riancho J. A., Zarrabeitia M. T., Amado J. A., Olmos J. M., Gonzalez-Macias J. Age-related differences in cytokine secretion. Gerontology. 1994;40:8–12. doi: 10.1159/000213568. [DOI] [PubMed] [Google Scholar]
  • 11.Rikans L. E., DeCicco L. A., Hornbrook K. R., Yamano T. Effect of age and carbon tetrachloride on cytokine concentrations in rat liver. Mech. Ageing Dev. 1999;108:173–182. doi: 10.1016/S0047-6374(99)00012-3. [DOI] [PubMed] [Google Scholar]
  • 12.Hayek M. G., Mura C., Wu D., Beharka A. A., Han S. N., Paulson K. E., Hwang D., Meydani S. N. Enhanced expression of inducible cyclooxygenase with age in murine macrophages. J. Immunol. 1997;159:2445–2451. [PubMed] [Google Scholar]
  • 13.Vernet D., Bonavera J. J., Swerdloff R. S., Gonzalez-Cadavid N. F., Wang C. Spontaneous expression of inducible nitric oxide synthase in the hypothalamus and other brain regions of aging rats. Endocrinology. 1998;139:3254–3261. doi: 10.1210/en.139.7.3254. [DOI] [PubMed] [Google Scholar]
  • 14.Jacob J. M., Dorheim M. A., Grammas P. The effect of age and injury on the expression of inducible nitric oxide synthase in facial motor neurons in F344 rats. Mech. Ageing Dev. 1999;107:205–218. doi: 10.1016/S0047-6374(98)00150-X. [DOI] [PubMed] [Google Scholar]
  • 15.Kim H.J., Kim J.W., Yu B.P., Chung H.Y. The effect of age on cyclooxygenase-2 gene expression: NFêB activation and IêBá degradation. Free. Rad. Biol. Med. 2000;28:683–692. doi: 10.1016/S0891-5849(99)00274-9. [DOI] [PubMed] [Google Scholar]
  • 16.Chung H.Y., Kim H.J., Shim K.H., Kim J.W., Yu B.P. Dietary modulation of prostanoid synthesis in the aging process: role of cyclooxygenase-2. Mech. Ageing Dev. 1999;111:97–106. doi: 10.1016/S0047-6374(99)00061-5. [DOI] [PubMed] [Google Scholar]
  • 17.Chung H.Y., Kim H.J., Kim J.W. The inflammation hypothesis of aging: Molecular Modulation by Calorie Restriction. Ann. N. Y. Acad. Sci. 2001;928:327–335. doi: 10.1111/j.1749-6632.2001.tb05662.x. [DOI] [PubMed] [Google Scholar]
  • 18.O’Neill G., Hutchinson A. F. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 1993;330:156–160. doi: 10.1016/0014-5793(93)80263-t. [DOI] [PubMed] [Google Scholar]
  • 19.Williams C. S., DuBois R. N. Prostaglandin endoperoxide synthase: why two isoforms? Am. J. Physiol. 1996;270:G393–G400. doi: 10.1152/ajpgi.1996.270.3.G393. [DOI] [PubMed] [Google Scholar]
  • 20.Hia T., Ristimaki A., Appleby S., Barriocanal J. G. Cyclooxygenase gene expression in inflammation and angiogenesis. Ann. N. Y. Acad. Sci. 1993;696:197–204. doi: 10.1111/j.1749-6632.1993.tb17152.x. [DOI] [PubMed] [Google Scholar]
  • 21.Sheng H., Shao J., Hooton E. B., Tsujii M., DuBois R. N., Beauchamp R. D. Cyclooxygenase-2 induction and transforming growth factor beta growth inhibition in rat intestinal epithelial cells. Cell Growth Differ. 1997;8:463–470. [PubMed] [Google Scholar]
  • 22.Liu R. H., Hotchkiss J. H. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat. Res. 1995;339:73–89. doi: 10.1016/0165-1110(95)90004-7. [DOI] [PubMed] [Google Scholar]
  • 23.Goto M., Katayama K. I., Shirakawa F., Tanaka I. Involvement of NF-kappaB p50/p65 heterodimer in activation of the human pro-interleukin-1beta gene at two subregions of the upstream enhancer element. Cytokine. 1999;11:16–28. doi: 10.1006/cyto.1998.0390. [DOI] [PubMed] [Google Scholar]
  • 24.Lebermann T. A., Baltimore D. Activation of the interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell Biol. 1990;10:2327–2334. doi: 10.1128/mcb.10.5.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Yao J., Mackman N., Edgington T. S., Fan S. T. Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J. Biol. Chem. 1997;272:795–801. doi: 10.1074/jbc.272.28.17795. [DOI] [PubMed] [Google Scholar]
  • 26.Tazawa R., Xu X. M., Wu K. K., Wang L. H. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun. 1994;203:190–199. doi: 10.1006/bbrc.1994.2167. [DOI] [PubMed] [Google Scholar]
  • 27.Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 1994;269:4705–4708. [PubMed] [Google Scholar]
  • 28.Velasco, M., Diaz-Guerra, M. J., Martin-Sanz, P., Alvarez, A., and Bosca, L.: Rapid Up-regulation of IkappaBbeta and abrogation of NF-kappaB activity in peritoneal macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 272, 23025–23030, 1997. [DOI] [PubMed]
  • 29.Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Nathan C. F. Secretory products of macrophages. J. Clin. Invest. 1987;79:319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kopydlowski K. M., Salkowski C. A., Cody M. J., van Rooijen N., Major J., Hamilton T. A., Vogel S. N. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 1999;163:1537–1544. [PubMed] [Google Scholar]
  • 32.Libermann T. A., Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 1990;10:2327–2334. doi: 10.1128/mcb.10.5.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Shakhov A. N., Collart M. A., Vassalli P., Nedospasov S. A., Jongeneel C. V. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J. Exp. Med. 1990;171:35–47. doi: 10.1084/jem.171.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Sang H., Wallis G. L., Stewart C. A., Kotake Y. Expression of cytokines and activation of transcription factors in lipopolysaccharide-administered rats and their inhibition by phenyl N-tertbutylnitrone (PBN) Arch. Biochem. Biophys. 1999;363:341–348. doi: 10.1006/abbi.1998.1086. [DOI] [PubMed] [Google Scholar]
  • 35.Legrand-Poels S., Maniglia S., Boelaert J. R., Piette J. Activation of the transcription factor NF-kappaB in lipopolysaccharide-stimulated U937 cells. Biochem. Pharmacol. 1997;53:339–346. doi: 10.1016/S0006-2952(96)00715-0. [DOI] [PubMed] [Google Scholar]
  • 36.Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Orr W. C., Sohal R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  • 38.Lavrovsky Y., Schwartzman M. L., Levere R. D., Kappas A., Abraham N. G. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. U.S.A. 1994;91:5987–5891. doi: 10.1073/pnas.91.13.5987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hayashi T., Goto S. Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech. Ageing Dev. 1998;102:55–66. doi: 10.1016/S0047-6374(98)00011-6. [DOI] [PubMed] [Google Scholar]
  • 40.Shibatani T., Nazir M., Ward W. F. Alteration of rat liver 20S proteasome activities by age and food restriction. J. Gerontol. A Biol. Sci. Med. Sci. 1996;51:B316–322. doi: 10.1093/gerona/51a.5.b316. [DOI] [PubMed] [Google Scholar]
  • 41.Keller J. N., Hanni K. B., Markesbery W. R. Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech. Ageing Dev. 2000;113:61–70. doi: 10.1016/S0047-6374(99)00101-3. [DOI] [PubMed] [Google Scholar]
  • 42.Paraidathathu T., de Groot H., Kehrer J. P. Production of reactive oxygen by mitochondrial from normoxic and hypoxic rat heart tissue. Free Rad. Biol. Med. 1992;13:289–297. doi: 10.1016/0891-5849(92)90176-H. [DOI] [PubMed] [Google Scholar]
  • 43.Puissant C., Houdebine L. An Improvement of the single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Biotechniques. 1991;8:148–149. [PubMed] [Google Scholar]
  • 44.Habib, A., Creminon, C., Frobert, Y., Grassi, J., Pradelles, P., and Maclouf, J.: Demonstration of an inducible cyclooxygenase in human entothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268, 23448–23454, 1993. [PubMed]
  • 45.Hattori M., Tugores A., Veloz L., Karin M., Brenner D. A. A simplified method for the preparation of transcriptionally active liver nuclear extracts. DNA Cell. Biol. 1990;9:777–781. doi: 10.1089/dna.1990.9.777. [DOI] [PubMed] [Google Scholar]
  • 46.Ghodosh L. A. In: Current Protocols in Molecular Biology. Ausubei F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Strunl K., editors. New York: Greene Publishing Co.; 1989. pp. 1221–1227. [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES