Abstract
It has been proposed that uric acid is an important scavenger of deleterious oxygen species and peroxynitrite in biological systems. The cellular sources responsible for the generation of damage-causing reactive oxygen species (ROS) are widespread. Xanthine dehydrogenase (XDH) / oxidase (XOD) catalyzes the oxidation of xanthine to uric acid. The rosy (ry) gene encodes XDH/XOD in Drosophila melanogaster. XDH codes for uric acid which is a ROS scavenger. XOD however is an enzyme system implicated in ROS production. In this study, we investigated the roles of XDH in the fly’s immune defense response to infection and in the aging process. We first compared ROS generation and nitric oxide (NO) level in the whole body and the gut of XDH mutant with those of wild type. Our results suggested that XDH has a protective effect with respect to both ROS and NO generations, particularly in the gut. We also examined the effect of a XDH deletion mutant on the relative sensitivity of the organism against bacterial infection, on the immune inducibility of antimicrobial peptides and on the effect of aging in the defensive response to infection. Our results strongly suggest that XDH plays an important role in the innate immune response and that the age-associated deterioration of the innate immune response might be, at least in part, associated with the loss of XDH activity in the aging process.
Full Text
The Full Text of this article is available as a PDF (673.6 KB).
References
- 1.Battelli M.G., Lorenzoni E., Stripe F. Milk xanthine oxidase Type D (dehydrogenase) and type O (oxidase) purification, interconversion and some properties. Biochem. J. 1973;131:191–198. doi: 10.1042/bj1310191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Harris C., Sanders S.A., Massey V. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J. Biol. Chem. 1999;274:4561–4569. doi: 10.1074/jbc.274.8.4561. [DOI] [PubMed] [Google Scholar]
- 3.Ames B.N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides antioxidant defense in human against oxidant and radical caused aging and cancer. Proc. Nat. Acad. Sci. USA. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Hilliker A.J., Duy F.B., Evans D., Phillips P. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc. Natl. Sci. USA. 1992;89:4343–4347. doi: 10.1073/pnas.89.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Yu B.P. Aging and oxidative stress: modification by dietary restriction. Free Rad. Biol. Med. 1996;21:651–668. doi: 10.1016/0891-5849(96)00162-1. [DOI] [PubMed] [Google Scholar]
- 6.Chung H.Y., Kim H.J., Jung K.J., Yoon J.S., Yoo M.A., Kim K.W., Yu B.P. The inflammatory process in aging. Clinical Gerontology. 2000;10:207–222. doi: 10.1017/S0959259800010327. [DOI] [Google Scholar]
- 7.Chung H.Y., Baek B.S., Song S.H., Kim M.S., Huh J.I. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age. 1997;20:127–140. doi: 10.1007/s11357-997-0012-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Hassnen I.E., Vuorinen K.H., Yiitalo K., Ala-Rami A. Role of cellular energetics in ischemia-reperfusion and ischemic preconditioning of myocardium. Mol. Cell. Biochem. 1998;184:393–400. doi: 10.1023/A:1006818708565. [DOI] [PubMed] [Google Scholar]
- 9.Freeman B.A. Free radicals in molecular biology, aging, and disease. New York: Ravan Press; 1984. pp. 43–52. [Google Scholar]
- 10.Chung H.Y., Kim H.J., Kim J.W., Yu B.P. The inflammation hypothesis of aging: molecular modulation by caloric restriction. Ann. N.Y. Acad. Sci. 2001;928:327–335. doi: 10.1111/j.1749-6632.2001.tb05662.x. [DOI] [PubMed] [Google Scholar]
- 11.Makinodan T., Kay M.M. Age influence on the immune system. Adv. Immunol. 1980;29:287–330. doi: 10.1016/S0065-2776(08)60047-4. [DOI] [PubMed] [Google Scholar]
- 12.Gardner I.D. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 1980;2:801–810. doi: 10.1093/clinids/2.5.801. [DOI] [PubMed] [Google Scholar]
- 13.Chung H.Y., Song S.H., Kim H.J., Ikeno Y., Yu B.P. Modulation of renal xanthine oxidoreductase in aging: gene expression and reactive oxygen species generation. J. Nutr. Health Aging. 1999;3:19–23. [PubMed] [Google Scholar]
- 14.Pfeffer K.D., Huecksteadt T.P., Hoidal J.R. Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells. Cytokine and steroid regulation. J. Immunol. 1994;153:1789–1797. [PubMed] [Google Scholar]
- 15.Mohamedali, K.A., Guicherit, O.M., Kellems, R.E., and Rudolph, F.B.: The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine. J. Biol. Chem., 268: 23728–23733, 1993. [PubMed]
- 16.Prichard M., Ducharme N.G., Wilkins P.A., Erb H.N., Butt M. Xanthine oxidase formation during experimental ischemia of the equine small intestine. Can. J. Vet. Res. 1991;55:310–314. [PMC free article] [PubMed] [Google Scholar]
- 17.Elrod-Erickson M., Mishra S., Schneider D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 2000;10:781–784. doi: 10.1016/S0960-9822(00)00569-8. [DOI] [PubMed] [Google Scholar]
- 18.Leulier F., Rodriguez A., Khush R.S., Abrams J.M., Lemaitre B. The Dorosophila caspase Dredd is requried to resist Gram-negative bacterial infection. EMBO Rep. 2000;1:353–358. doi: 10.1093/embo-reports/kvd073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Dushay, M.S., Asling, B., and Hultmark, D.: Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA., 93: 10343–10347, 1996. [DOI] [PMC free article] [PubMed]
- 20.Deliconstantinos G., Villiotou V., Fassitsas C. Ultraviolet-irradiated human endothelial cells elaborate nitric oxide that may evoke vasodilatory response. J. Cardiovasc. Pharmacol. 1992;20:S63–65. doi: 10.1097/00005344-199220002-00011. [DOI] [PubMed] [Google Scholar]
- 21.Deliconstantinos G., Villiotou V., Stravrides J.C. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br. J. Pharmacol. 1995;114:1257–1265. doi: 10.1111/j.1476-5381.1995.tb13341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Xie Q.W., Cho H.J., Calaycay J., Mumford R.A., Swiderek K.M., Lee T.D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophage. Science. 1992;256:225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
- 23.Geller D.A., Nussler A.K., Di Silvio M., Lowenstein C.J., Shapiro R.A., Wang S.C., Simmons R.L., Billiar T.R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc. Natl. Acad. Sci. USA. 1993;90:522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Hassoun P.M., Yu F.S., Cote C.G., Zulueta J.J., Sawhney R., Skinner K.A., Skinner H.B., Parks D.A., Lanzillo J.J. Upregulation of xanthine oxidase by lipopolysaccharide, interleukin-1, and hypoxia. Role in acute lung injury. Am. J. Respir. Crit. Care. Med. 1998;158:299–305. doi: 10.1164/ajrccm.158.1.9709116. [DOI] [PubMed] [Google Scholar]
- 25.Kayyali, U.S., Donaldson, C., Huang, H., Abdelnour, R., and Hassoun, P.M.: Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J. Biol. Chem., 276: 14359–14365, 2001. [DOI] [PubMed]
- 26.Martin-Blanco E. p38 MAPK signalling cascades: ancient roles and new functions. BioEssays. 2000;22:637–645. doi: 10.1002/1521-1878(200007)22:7<637::AID-BIES6>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- 27.Hoffmann J.A., Reichhart J.M., Hetru C. Innate immunity in higher insects. Curr. Opin. Immunol. 1996;8:8–13. doi: 10.1016/S0952-7915(96)80098-7. [DOI] [PubMed] [Google Scholar]
- 28.Reaume A.G., Clark S.H., Chovnick A. Xanthine dehydrogenase is transported to the Drosophila eye. Genetics. 1989;123:503–509. doi: 10.1093/genetics/123.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Pitts R.J., Zwiebel L.J. Isolation and characterization of the Xanthine dehydrogenase gene of the Mediterranean fruit fly, Ceratitis capitata. Genetics. 2001;158:1645–1655. doi: 10.1093/genetics/158.4.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Parks D.A., Williams T.K., Beckman J.S. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine:a reevaluation. Am. J. Physiol. 1988;254:G768–G774. doi: 10.1152/ajpgi.1988.254.5.G768. [DOI] [PubMed] [Google Scholar]
- 31.Reaume A.G., Clark S.H., Chovnick A. Xanthine dehydrogenase is transported to the Drosophila eye. Genetics. 1989;123(3):503–509. doi: 10.1093/genetics/123.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Hedengren M., Asling B., Dushay M.S., Ando I., Ekengren S., Wihlborg M., Hultmark D. Relish, a central factor in the control of humoral, but not cellular immunity in Drosophila. Mol. Cell. 1999;4:827–837. doi: 10.1016/S1097-2765(00)80392-5. [DOI] [PubMed] [Google Scholar]
- 33.Cathcart R., Schwiers E., Ames B.N. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay. Methods Enzymol. 1984;105:352–358. doi: 10.1016/S0076-6879(84)05047-3. [DOI] [PubMed] [Google Scholar]
- 34.LeBel C.P., Ischiropoulous H., Bondy S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227–231. doi: 10.1021/tx00026a012. [DOI] [PubMed] [Google Scholar]
- 35.Sohn O.S., Fiala E.S. Analysis of nitrite/nitrate in biological fluids: denitrification of 2-nitripropane in F344 rats. Anal. Biochem. 2000;279:202–208. doi: 10.1006/abio.1999.4471. [DOI] [PubMed] [Google Scholar]
- 36.Schmidt, H.H.H.W. and Kelmm, M: Determination of nitrite and nitrate by the Griess reaction. In: Methods in Nitric Oxide research, John Wiley, Sons Limited, 1996, p. 491–497.
- 37.Wu L.P., Anderson K.V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature. 1998;392:93–97. doi: 10.1038/32195. [DOI] [PubMed] [Google Scholar]
- 38.Wicker, C., Reichhart, J.M., Hoffmann, D., Hultmark, D., Samakovlis, C., Hoffmann, J.A.: Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J. Biol. Chem. 265: 22493–22498, 1990. [PubMed]
- 39.Dimarcq J.L., Hoffmann D., Meister M., Bulet P., Lanot R., Reichhart J.M., Hoffmann J.A. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur. J. Biochem. 1994;221:201–209. doi: 10.1111/j.1432-1033.1994.tb18730.x. [DOI] [PubMed] [Google Scholar]
- 40.Asling B., Dushay M.S., Hultmark D. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem. Mol. Biol. 1995;25:511–518. doi: 10.1016/0965-1748(94)00091-C. [DOI] [PubMed] [Google Scholar]
- 41.Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W.F., Hetru, C., Hoffmann, J.A.: Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269: 33159–33163, 1994. [PubMed]
- 42.Levashina E.A., Ohresser S., Lemaitre B., Imler J.L. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol. 1998;278:515–527. doi: 10.1006/jmbi.1998.1705. [DOI] [PubMed] [Google Scholar]