Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2001 May;18(5):305–310. doi: 10.1023/A:1016622519228

Animal Experimentation: The Biological Significance of Phospholipase C β1 Gene Mutation in Mouse Sperm in the Acrosome Reaction, Fertilization, and Embryo Development

Dooseok Choi 1, Eunyoung Lee 1, Seongsoo Hwang 1, Kisun Jun 2, Daesoo Kim 2, Byung-Koo Yoon 1, Hee-Sup Shin 2, Je-Ho Lee 1
PMCID: PMC3455337  PMID: 11464583

Abstract

Purpose: We carried out this study to evaluate the biological significance of phospholipase C β1 gene mutation in mouse sperm in the acrosome reaction, fertilization, and embryo development.

Methods: Study subjects were divided into two groups according to the sperm [intact phospholipase C (PLC) β1 and PLC β1−/− C57BL/6J × CBA F1 mouse sperm] used. The positive acrosome reaction rate labeled with fluorescein isothiocyanate–Pisum sativum agglutinin, the fertilization rate, and the rate of embryos developed to the stage of morula or blastocyst in the two groups were compared.

Results: The mouse sperm null for the PLC β1 gene showed a lower acrosome reaction rate than control sperm (69.2 vs 50.9%, P < 0.05). And the fertilization rate and the rate of embryos developed to the stage of morula or blastocyst were also lower in the group using PLC β1−/− mouse sperm compared to the intact group (P < 0.05; 73.5 vs 51.8% and 15.7 vs 4.3%, respectively).

Conclusions: Mutation of the PLC β1 gene in the mouse sperm reduces the acrosome reaction rate, fertilization rate, and embryo development rate, which may be the etiologic factors responsible for the low reproductive rate of PLC β1−/− mouse.

Keywords: phospholipase C β1 gene mutation, acrosome reaction, fertilization, embryo development

Full Text

The Full Text of this article is available as a PDF (75.8 KB).

REFERENCES

  • 1.Breitbart H, Spungin B. The biochemistry of the acrosome reaction. Mol Hum Reprod. 1997;3:195–202. doi: 10.1093/molehr/3.3.195. [DOI] [PubMed] [Google Scholar]
  • 2.Yanagimachi R, Usui N. Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res. 1974;89:161–174. doi: 10.1016/0014-4827(74)90199-2. [DOI] [PubMed] [Google Scholar]
  • 3.Fraser LR. Motility patterns in mouse spermatozoa before and after capacitation. J Exp Zool. 1977;202:439–444. doi: 10.1002/jez.1402020314. [DOI] [PubMed] [Google Scholar]
  • 4.Kopf GS, Gerton GL. The mammalian sperm acrosome and the acrosome reaction. In: Wasserman PM, editor. Elements of Mammalian Fertilization. Boca Raton, FL: CRC Press; 1991. pp. 153–203. [Google Scholar]
  • 5.Spungin B, Margalit I, Breitbart H. Sperm exocytosis reconstructed in a cell-free system. J Cell Sci. 1995;108(Pt8):2525–2535. doi: 10.1242/jcs.108.6.2525. [DOI] [PubMed] [Google Scholar]
  • 6.Dupont G, McGuinness OM, Johson MH, Berridge MJ, Borgese F. Phospholipase C in mouse oocytes: Characterization of ? and ? isoforms and their possible involvement in sperm-induced Ca2+ spiking. Biochemistry. 1996;316(2):583–591. doi: 10.1042/bj3160583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Walensky LD, Snyder SH. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosome of mammalian sperm. J Cell Biol. 1995;130:857–869. doi: 10.1083/jcb.130.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Miyazaki S, Yuzaki M, Nakada K, et al. Block of Ca2C oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science (Wash. DC) 1992;257:251–255. doi: 10.1126/science.1321497. [DOI] [PubMed] [Google Scholar]
  • 9.Shilling FM, Carroll DJ, Muslin AJ, Escobedo JM, Williams LT, Jaffe LA. Evidence for tyrosine kinase and G proteincoupled pathways leading to starfish egg activation. Dev Biol. 1994;162:590–599. doi: 10.1006/dbio.1994.1112. [DOI] [PubMed] [Google Scholar]
  • 10.Kim DS, Jun KS, Lee SB, et al. Phospholipase C isozymes selectively coupled to specific neurotransmitter receptors. Nature. 1997;389:290–293. doi: 10.1038/38508. [DOI] [PubMed] [Google Scholar]
  • 11.Osman RA, Andris ML, Jones AD, Meizel S. Steroid induced exocytosis: The human sperm acrosome reaction. Biochem Biophy Res Commun. 1989;160:828–833. doi: 10.1016/0006-291x(89)92508-4. [DOI] [PubMed] [Google Scholar]
  • 12.Blackmore PF, Beebe SJ, Danforth DR, Alexander N. Progesterone and 17a-hydroxyprogesterone: Novel stimulators of calcium influx in human sperm. J Biol Chem. 1990;265:1376–1380. [PubMed] [Google Scholar]
  • 13.Blackmore PF, Neulen J, Lattanzio F, Beebe SJ. Cell surfacebinding sites for progesterone mediate calcium uptake in human sperm. J Biol Chem. 1991;266:18655–18659. [PubMed] [Google Scholar]
  • 14.Roldan ERS, Murase T, Shi QX. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994;266:1578–1581. doi: 10.1126/science.7985030. [DOI] [PubMed] [Google Scholar]
  • 15.Lee MA, Storey BT. Endpoint of first stage of zona pellucidainduced acrosome reaction in mouse spermatozoa characterized by acrosome H+ and Ca2+permeability. Gamete Res. 1989;24:303–326. doi: 10.1002/mrd.1120240307. [DOI] [PubMed] [Google Scholar]
  • 16.Florman HM, Tombes RM, First NL, Babcock DF. An adhesion-associated agonist from the zona pellucida activites G protein-promoted elevations of internal Ca2+and pH that mediate mammalian sperm acrosome reaction. Dev Biol. 1989;135:133–146. doi: 10.1016/0012-1606(89)90164-4. [DOI] [PubMed] [Google Scholar]
  • 17.Hyne RV, Garbers DL. Calcium-dependent increase in adenosine 3',5'-monophosphate and induction of the arosome reaction in guinea pig spermatozoa. Proc Nal Acad Sci USA. 1979;76:5699–5703. doi: 10.1073/pnas.76.11.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Domino SE, Garbers DL. The fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inosotol 1,4,5-trisphosphate accumulation. J Biol Chem. 1988;263:690–695. [PubMed] [Google Scholar]
  • 19.Thomas P, Meizel S. Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx. Biochem J. 1989;264:539–546. doi: 10.1042/bj2640539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lee SB, Rhee SG. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 1995;7:183–189. doi: 10.1016/0955-0674(95)80026-3. [DOI] [PubMed] [Google Scholar]
  • 21.Schlessinger J. Phospholipase C? activation and phosphoinositide hydrolysis are essential for embryonal development. Proc Natl Acad Sci USA. 1997;94:2798–2799. doi: 10.1073/pnas.94.7.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem. 1997;272:15045–15048. doi: 10.1074/jbc.272.24.15045. [DOI] [PubMed] [Google Scholar]
  • 23.Bedford JM. Sperm capacitation and fertilization in mammals. Biol Reprod. 1970;2(Suppl2):128–158. [PubMed] [Google Scholar]
  • 24.Roldan ERS, Harrison RAP. Polyphosphoinositide breakdown and subsequent exocytosis in the Ca2+/ionophoreinduced acrosome reaction of mammalian spermatozoa. Biochem J. 1989;259:397–406. doi: 10.1042/bj2590397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Rhee SG, Choi KD. Regulation of inositol phospholipidspecific phospholipase C isozymes. J Biol Chem. 1992;267:12393–12396. [PubMed] [Google Scholar]
  • 26.Spungin B, Breitbart H. Calcium mobilization and influx during sperm exocytosis. J Cell Sci. 1996;109(7):1947–1955. doi: 10.1242/jcs.109.7.1947. [DOI] [PubMed] [Google Scholar]
  • 27.Florman HM, First N. Regulation of acrosome exocytosis. Dev Biol. 1988;128:464–473. doi: 10.1016/0012-1606(88)90308-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES