Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 1999 Nov;16(10):512–519. doi: 10.1023/A:1020541019347

The Role of Apoptosis in Normal and Abnormal Embryonic Development

Alexander Brill 1, Arkady Torchinsky 1, Howard Carp 1, Vladimir Toder 1,
PMCID: PMC3455372  PMID: 10575578

Abstract

Programmed cell death or apoptosis is a widespread biological phenomenon. Apoptosis is characterized by typical cell features such as membrane blebbing, chromatin condensation, and DNA fragmentation. It involves a number of membrane receptors (e.g., Fas, TNFR) and a cascade of signal transduction steps resulting in the activation of a number of cysteine proteases known as caspases. Disordered apoptosis may lead to carcinogenesis and participates in the pathogenesis of Alzheimer disease, Parkinson disease, or AIDS. Programmed cell death plays an important role in the processes of gamete maturation as well as in embryo development, contributing to the appropriate formation of various organs and structures. Apoptosis is one of the mechanisms of action of various cytotoxic agents and teratogens. Teratogen-induced excessive death of embryonic cells is undoubtedly one of the most important events preceding the occurrence of structural abnormalities, regardless of their nature. Therefore understanding the mechanisms involved in physiological as well as in disturbed or dysregulated apoptosis may lead to the development of new methods of preventive treatment of various developmental abnormalities. The present review summarizes data on the mechanisms of programmed cell death and concentrates on apoptosis involved in normal or disturbed gametogenesis and in normal and abnormal embryonic development.

Keywords: apoptosis, gametogenesis, embryogenesis, maldevelopment

Full Text

The Full Text of this article is available as a PDF (740.0 KB).

REFERENCES

  • 1.Sadler TW, Hanter ES. Principles of abnormal development. Past, present and future. In: Kimmel CA, Buelke-Sam J., editors. Development Toxicology. New York: Raven Press; 1994. pp. 53–63. [Google Scholar]
  • 2.Richburg JH. Environmental testicular toxicity & germ cell apoptosis. Bethesda, MD: Crisp Data base, National Institutes of Health; 1999. [Google Scholar]
  • 3.Bodey B, Bodey B, Jr, Kaiser HE. Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions. In Vivo. 1998;12:123–133. [PubMed] [Google Scholar]
  • 4.Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem. 1997;45:923–934. doi: 10.1177/002215549704500702. [DOI] [PubMed] [Google Scholar]
  • 5.Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
  • 6.Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–1308. doi: 10.1126/science.281.5381.1305. [DOI] [PubMed] [Google Scholar]
  • 7.Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/FAS)-mediated apoptosis. Curr Opin Immunol. 1998;10:545–551. doi: 10.1016/s0952-7915(98)80222-7. [DOI] [PubMed] [Google Scholar]
  • 8.Fuchs EJ, McKenna KA, Bedi A. P53-dependent DNA damage-induced apoptosis requires FAS/APO-1-independent activation of CPP32beta. Cancer Res. 1997;57:2550–2554. [PubMed] [Google Scholar]
  • 9.Evan G, Littlewood T. A matter of life and cell death. Science. 1998;281:1317–1322. doi: 10.1126/science.281.5381.1317. [DOI] [PubMed] [Google Scholar]
  • 10.King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol. 1998;60:601–617. doi: 10.1146/annurev.physiol.60.1.601. [DOI] [PubMed] [Google Scholar]
  • 11.Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273:9357–9360. doi: 10.1074/jbc.273.16.9357. [DOI] [PubMed] [Google Scholar]
  • 12.Adams JM, Cory S. The Bcl-2 protein family: arbitres of cell survival. Science. 1998;281:1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  • 13.Sadoul R. BCL-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Diff. 1998;5:805–815. doi: 10.1038/sj.cdd.4400438. [DOI] [PubMed] [Google Scholar]
  • 14.Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998;94:325–337. doi: 10.1016/s0092-8674(00)81476-2. [DOI] [PubMed] [Google Scholar]
  • 15.Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 1998;12:806–819. doi: 10.1101/gad.12.6.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Blanco-Rodriguez J, Martinez-Garcia C. Apoptosis pattern elicited by several apoptogenic agents on the seminiferous epithelium of the adult rat testis. J Androl. 1998;19:487–497. [PubMed] [Google Scholar]
  • 17.Larsen WJ. Human Embryology. Singapore: Churchill Livingstone; 1993. [Google Scholar]
  • 18.De Pol A, Vaccina F, Forabosco A, Cavazzuti E, Marzona L. Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod. 1997;12:2235–2241. doi: 10.1093/humrep/12.10.2235. [DOI] [PubMed] [Google Scholar]
  • 19.De Pol A, Marzona L, Vaccina F, Negro R, Sena P, Forabosco A. Apoptosis in different stages of human oogenesis. Anticancer Res. 1998;18:3457–3461. [PubMed] [Google Scholar]
  • 20.Tesarik J, Guido M, Mendoza C, Greco E. Human spermatogenesis in vitro: Respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J Clin Endocrinol Metab. 1998;83:4467–4473. doi: 10.1210/jcem.83.12.5304. [DOI] [PubMed] [Google Scholar]
  • 21.Pentikainen V, Erkkila K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol. 1999;276(2):E310–E316. doi: 10.1152/ajpendo.1999.276.2.E310. [DOI] [PubMed] [Google Scholar]
  • 22.Lee J, Richburg JH, Younkin SC, Boekelheide K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology. 1997;138:2081–2088. doi: 10.1210/endo.138.5.5110. [DOI] [PubMed] [Google Scholar]
  • 23.Sugihara A, Saiki S, Tsuji M, Tsujimura T, Nakata Y, Kubota A, Kotake T, Terada N. Expression of Fas and Fas ligand in the testes and testicular germ cell tumors: an immunohistochemical study. Anticancer Res. 1997;17:3861–2865. [PubMed] [Google Scholar]
  • 24.Ogi S, Tanji N, Yokoyama M, Takeuchi M, Terada N. Involvement of Fas in the apoptosis of mouse germ cells induced by experimental cryptorchidism. Urol Res. 1998;26:17–21. doi: 10.1007/s002400050017. [DOI] [PubMed] [Google Scholar]
  • 25.Leo CP, Hsu SY, McGee EA, Salanova M, Hsueh AJ. DEFT, a novel death effector domain-containing molecule predominantly expressed in testicular germ cells. Endocrinology. 1998;139:4839–4848. doi: 10.1210/endo.139.12.6335. [DOI] [PubMed] [Google Scholar]
  • 26.Schwartz D, Goldfinger N, Rotter V. Expression of p53 protein in spermatogenesis is confined to the tetraploid pachytene primary spermatocytes. Oncogene. 1993;8:1487–1494. [PubMed] [Google Scholar]
  • 27.Almon E, Goldfinger N, Kapon A, Schwartz D, Levine A.J, Rotter V. Testicular tissue-specific expression of the p53 supressor gene. Dev Biol. 1993;156:107–116. doi: 10.1006/dbio.1993.1062. [DOI] [PubMed] [Google Scholar]
  • 28.Sjoblom T, Lahdetie J. Expression of p53 in normal and gamma-irradiated rat testis suggests a role for p53 in a meiotic recombination and repair. Oncogene. 1996;12:2499–2505. [PubMed] [Google Scholar]
  • 29.Yin Y, Stahl BC, DeWolf WC, Morgentaler A. p53-mediated germ cell quality control in spermatogenesis. Dev Biol. 1998;204:165–171. doi: 10.1006/dbio.1998.9074. [DOI] [PubMed] [Google Scholar]
  • 30.De Rooij DG. Stem cells in the testis. Int J Exp Pathol. 1998;79:67–80. doi: 10.1046/j.1365-2613.1998.t01-1-00057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO. 1997;16:2262–2270. doi: 10.1093/emboj/16.9.2262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, de Kretser D, Metcalf D, Kontgen F, Adams JM, Cory S. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA. 1998;95:12424–12431. doi: 10.1073/pnas.95.21.12424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Hasegawa M, Zhang Y, Niibe H, Terry NH, Meistrich ML. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res. 1998;149(3):263–270. [PubMed] [Google Scholar]
  • 34.Oliver RT. Germ cell cancer of the testis. Curr Opin Oncol. 1998;10(3):266–272. doi: 10.1097/00001622-199805000-00015. [DOI] [PubMed] [Google Scholar]
  • 35.Xu JP, Li X, Mori E, Sato E, Saito S, Guo MW, Mori T. Expression of Fas-Fas ligand system associated with atresia in murine ovary. Zygote. 1997;5(4):321–327. doi: 10.1017/s0967199400003907. [DOI] [PubMed] [Google Scholar]
  • 36.Ogi S, Tanji N, Yokoyama M, Takeuchi M, Terada N. Involvement of Fas in the apoptosis of mouse germ cells induced by experimental cryptorchidism. Urol Res. 1998;26(1):17–21. doi: 10.1007/s002400050017. [DOI] [PubMed] [Google Scholar]
  • 37.Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM. Bcl-2 overexpression results in reciprocal downregulation of Bcl-X(L) and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene. 1999;18(7):1457–1464. doi: 10.1038/sj.onc.1202420. [DOI] [PubMed] [Google Scholar]
  • 38.Woolveridge I, de Boer-Brouwer M, Taylor MF, Teerds KJ, Wu FC, Morris ID. Apoptosis in the rat spermatogenic epithelium following androgen withdrawal: Changes in apoptosis-related genes. Biol Reprod. 1999;60(2):461–470. doi: 10.1095/biolreprod60.2.461. [DOI] [PubMed] [Google Scholar]
  • 39.Hardy K. Cell death in mammalian blastocyst. Mol Hum Reprod. 1997;3:919–925. doi: 10.1093/molehr/3.10.919. [DOI] [PubMed] [Google Scholar]
  • 40.Kumazawa T, Inouye M, Hayasaka I, Yamamura H, Murata Y. Difference in sensitivity of inner cell mass and trophectoderm to X-irradiation in mouse blastocysts. Teratology. 1998;57:146–151. doi: 10.1002/(SICI)1096-9926(199803)57:3<146::AID-TERA4>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 41.Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: Evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56:1088–1096. doi: 10.1095/biolreprod56.5.1088. [DOI] [PubMed] [Google Scholar]
  • 42.Runic R, Lockwood CJ, LaChapelle L, Dipasquale B, Demopoulos RI, Kumar A, Guller S. Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab. 1998;83:660–666. doi: 10.1210/jcem.83.2.4600. [DOI] [PubMed] [Google Scholar]
  • 43.Wiley LM, Wu JX, Harari I, Adamson ED. Epidermal growth factor receptor mRNA and protein increase after the four-cell preimplantation stage in murine development. Dev Biol. 1992;149:247–260. doi: 10.1016/0012-1606(92)90282-l. [DOI] [PubMed] [Google Scholar]
  • 44.Nelson DM. Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta. 1996;17:387–391. doi: 10.1016/s0143-4004(96)90019-3. [DOI] [PubMed] [Google Scholar]
  • 45.Uckan D, Steele A, Cherry, Wang BY, Chamizo W, Koutsonikolis A, Gilbert-Barness E, Good RA. Trophoblasts express Fas ligand: A proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod. 1997;3:655–662. doi: 10.1093/molehr/3.8.655. [DOI] [PubMed] [Google Scholar]
  • 46.Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
  • 47.Narayanan V. Apoptosis in development and disease of the nervous system. 1. Naturally occurring cell death in the developing nervous system. Pediatr Neurol. 1997;16:9–13. doi: 10.1016/s0887-8994(96)00257-3. [DOI] [PubMed] [Google Scholar]
  • 48.Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K. Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec. 1995;242:103–110. doi: 10.1002/ar.1092420114. [DOI] [PubMed] [Google Scholar]
  • 49.Zakeri ZF, Ahuja HS. Cell death/apoptosis: Normal, chemically induced and teratogenic effect. Mutat Res. 1997;396:149–161. doi: 10.1016/s0027-5107(97)00181-4. [DOI] [PubMed] [Google Scholar]
  • 50.Hurle JM, Ros MA, Climent V, Garcia-Martinez V. Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc Res Tech. 1996;34:236–246. doi: 10.1002/(SICI)1097-0029(19960615)34:3<236::AID-JEMT6>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 51.Lee DM, Osathanondh R, Yeh J. Localization of Bcl-2 in the human fetal mullerian tract. Fertil Steril. 1998;70:135–140. doi: 10.1016/s0015-0282(98)00126-5. [DOI] [PubMed] [Google Scholar]
  • 52.Kavlock RJ, Daston GP. Introduction. In: Kavlock RJ, Daston GP, editors. Drug Toxicity in Embryonic Development. Berlin/Heidelberg: Springer-Verlag; 1997. pp. 1–11. [Google Scholar]
  • 53.Scott WJ. Cell death and reduced proliferative rate. In: Wilson JG, Fraser FC, editors. Handbook of Teratology. New York/London: Plenum Press; 1977. pp. 81–98. [Google Scholar]
  • 54.Edwards MJ, Walsh DA, Li Z. Hyperthermia, teratogenesis and the heat shock response in mammalian embryos in culture. Int J Dev Biol. 1997;41:345–358. [PubMed] [Google Scholar]
  • 55.Shepard TH. Catalog of Teratogenic Agents. Baltimore/London: The Johns Hopkins University Press; 1992. [Google Scholar]
  • 56.Mirkes PE, Cornel LM, Park HW, Cunnigham ML. Induction of thermotolerance in early postimplantation rat embryos is associated with increased resistance to hyperthermia-induced apoptosis. Teratology. 1997;56:210–219. doi: 10.1002/(SICI)1096-9926(199709)56:3<210::AID-TERA4>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 57.Yitzhakie D, Torchinsky A, Savion S, Toder V: Maternal immunopotentiation affects the teratogenic response to hyperthermia. J Reprod Immunol 1999 (in press) [DOI] [PubMed]
  • 58.Siles E, Villalobos M, Jones L, Guerrero R, Eady JJ, Valenzuela MT, Nunez MI, McMillan TJ, Ruiz de Almodovar JM. Apoptosis after gamma irradiation. Is it an important cell death modality? Br J Cancer. 1998;78:1594–1599. doi: 10.1038/bjc.1998.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Torchinsky A, Fein A, Toder V. Immunoteratology: I. MHC involvement in the embryo response to teratogens in mice. Am J Reprod Immunol. 1995;34:288–298. doi: 10.1111/j.1600-0897.1995.tb00955.x. [DOI] [PubMed] [Google Scholar]
  • 60.Zile MH. Vitamin A and embryonic development: An overview. J Nutr. 1998;128:455S–458S. doi: 10.1093/jn/128.2.455S. [DOI] [PubMed] [Google Scholar]
  • 61.Rogers MB. Life-and-death decision influenced by retinoids. Curr Topics Dev Biol. 1997;35:1–46. doi: 10.1016/s0070-2153(08)60255-0. [DOI] [PubMed] [Google Scholar]
  • 62.Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes. 1997;46:1189–1197. doi: 10.2337/diab.46.7.1189. [DOI] [PubMed] [Google Scholar]
  • 63.Moley KH, Chi MM, Knudson CM, Korsmeyer SJ, Mueckler MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med. 1998;4:1421–1424. doi: 10.1038/4013. [DOI] [PubMed] [Google Scholar]
  • 64.Forsberg H, Eriksson UJ, Welsh N. Apoptosis in embryos of diabetic rats. Pharmacol Toxicol. 1998;83:104–111. doi: 10.1111/j.1600-0773.1998.tb01452.x. [DOI] [PubMed] [Google Scholar]
  • 65.Wilson JG. Current status of teratology-general principles and mechanisms derived from animal studies. In: Wilson JG, Fraser FC, editors. Handbook of Teratology. New York/London: Plenum Press; 1977. pp. 47–74. [Google Scholar]
  • 66.Torchinsky A, Savion S, Gorivodsky M, Shepshelovich J, Zaslavsky Z, Fein A., Toder V. Cyclophosphamide-induced teratogenesis in ICR mice: The role of apoptosis. Teratogen Mutagen Carcinogen. 1995;15:179–190. doi: 10.1002/tcm.1770150404. [DOI] [PubMed] [Google Scholar]
  • 67.Nomura T, Hata S, Kusafuka T. Suppression of developmental anomalies by maternal macrophages in mice. J Exp Med. 1990;172:1325–1330. doi: 10.1084/jem.172.5.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Baines MG, Duglos AJ, deFougerolles AR, Gendron RL. Immunological prevention of spontaneous early embryo resorption is mediated by non-specific immunostimulation. Am J Reprod Immunol. 1996;35:34–42. doi: 10.1111/j.1600-0897.1996.tb00006.x. [DOI] [PubMed] [Google Scholar]
  • 69.Clark DA, Banwatt D, Chaouat G. Stress-triggered abortion in mice is prevented by alloimmunization. Am J Reprod Immunol. 1993;29:141–147. doi: 10.1111/j.1600-0897.1993.tb00579.x. [DOI] [PubMed] [Google Scholar]
  • 70.Torchinsky A, Toder V, Savion S, Shepshelovich J, Orenstein H, Fein A. Immunopotentiation increases the resistance of mouse embryos to diabetes-induced teratogenic effect. Diabetologia. 1997;40:635–640. doi: 10.1007/s001250050727. [DOI] [PubMed] [Google Scholar]
  • 71.Toder V, Savion S, Gorivodsky M, Shepshelovich J, Torchinsky A. Teratogen-induced apoptosis may be affected by immunopotentiation. J Reprod Immunol. 1996;30:173–185. doi: 10.1016/0165-0378(96)00960-6. [DOI] [PubMed] [Google Scholar]
  • 72.Ivnitsky I, Torchinsky A, Gorivodsky M, Zemlyak I, Orenstein H, Savion S, Shepshelovich J, Carp H, Fein A, Toder V. TNF-α expression in embryos exposed to a teratogen. Am J Reprod Immunol. 1998;40:431–440. doi: 10.1111/j.1600-0897.1998.tb00430.x. [DOI] [PubMed] [Google Scholar]
  • 73.Gorivodsky M, Zemliak I, Orenstein H, Savion S, Fein A, Torchinsky A, Toder V. Tumor necrosis factor alpha mRNA and protein expression in the uteroplacental unit of mice with pregnancy loss. J Immunol. 1998;160:4280–4288. [PubMed] [Google Scholar]
  • 74.Gorivodsky M, Torchinsky A, Zemliak I, Savion S, Fein A, Toder V. TGFβ2 mRNA expression and pregnancy failure in mice. Am J Reprod Immunol. 1999;42:124–133. [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES