Abstract
Neurotrophic factors are now recognized to play important roles in the normal function of the mature central nervous system. This knowledge has motivated experiments to evaluate the potential benefits of administering neurotrophic factors to the aged brain. This article provides a review of studies to date that have determined the behavioral effects of such treatments. Nerve growth factor (NGF) administration appears to reliably enhance learning and memory in aged rats, while glial-derived neurotrophic factor (GDNF) causes some improvement in motor function. Problems associated with neurotrophic factor administration to humans are discussed.
Key words: Neurotrophin, Nerve Growth Factor, Glia-Derived Neurotrophic Factor, Cognition, Motor, Behavior, Aging, Therapeutic
Full Text
The Full Text of this article is available as a PDF (652.3 KB).
References
- 1.Maness L. M., Kastin A. J., Weber J. T., Banks W. A., Beckman B. S., Zadina J. E. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci. Biobehav. Rev. 1994;18:143–59. doi: 10.1016/0149-7634(94)90043-4. [DOI] [PubMed] [Google Scholar]
- 2.Davies A. M. The role of neurotrophins during successive stages of sensory neuron development. Prog. Growth Factor Res. 1994;5:263–89. doi: 10.1016/0955-2235(94)90010-8. [DOI] [PubMed] [Google Scholar]
- 3.Ip N.Y., Yancopoulos G. D. The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu. Rev. Neurosci. 1996;19:491–515. doi: 10.1146/annurev.ne.19.030196.002423. [DOI] [PubMed] [Google Scholar]
- 4.Cowen T., Gavazzi I. Plasticity in adult and ageing sympathetic neurons. Prog. Neurobiol. 1998;54:249–88. doi: 10.1016/S0301-0082(97)00071-3. [DOI] [PubMed] [Google Scholar]
- 5.Svendsen C. N., Sofroniew M. V. Do central nervous system neurons require target-derived neurotrophic support for survival throughout adult life and aging? Perspect. Dev. Neurobiol. 1996;3:133–42. [PubMed] [Google Scholar]
- 6.Rylett R. J., Williams L. R. Role of neurotrophins in cholinergic-neurone function in the adult and aged CNS. Trends Neurosci. 1994;17:486–490. doi: 10.1016/0166-2236(94)90138-4. [DOI] [PubMed] [Google Scholar]
- 7.Taglialatela G., Caprioli A., Giuliani A., Ghirardi O. Spatial memory and NGF levels in aged rats: natural variability and effects of acetyl-L-carnitine treatment. Exp. Gerontol. 1996;31:577–87. doi: 10.1016/0531-5565(96)00052-6. [DOI] [PubMed] [Google Scholar]
- 8.Henriksson B. G., Soderstrom S., Gower A. J., Ebendal T., Winblad B., Mohammed A. H. Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav. Brain Res. 1992;48:15–20. doi: 10.1016/s0166-4328(05)80134-2. [DOI] [PubMed] [Google Scholar]
- 9.Bäckman C., Rose G. M., Bartus R. T., Hoffer B. J., Mufson E. J., Granholm A. C. Carrier mediated delivery of NGF: alterations in basal forebrain neurons in aged rats revealed using antibodies against low and high affinity NG F receptors. J. Comp. Neurol. 1997;387:1–11. doi: 10.1002/(SICI)1096-9861(19971013)387:1<1::AID-CNE1>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- 10.Hasenohri R. U., Soderstrom S., Mohammed A. H., Ebendal T., Huston J. P. Reciprocal changes in expression of mRNA for nerve growth factor and its receptors TrkA and LNGFR in brain of aged rats in relation to maze learning deficits. Exp. Brain Res. 1997;114:205–13. doi: 10.1007/PL00005629. [DOI] [PubMed] [Google Scholar]
- 11.Fischer W., Wictorin K., Björklund A., Williams L. R., Varon S., Gage F. H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987;329:65–68. doi: 10.1038/329065a0. [DOI] [PubMed] [Google Scholar]
- 12.Fischer W., Chen K. S., Gage F. H., Bjorklund A. Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol. Aging. 1992;13:9–23. doi: 10.1016/0197-4580(92)90003-G. [DOI] [PubMed] [Google Scholar]
- 13.Hefti F., Weiner W. J. Nerve growth factor and Alzheimer’s disease. Ann. Neurol. 1986;20:275–281. doi: 10.1002/ana.410200302. [DOI] [PubMed] [Google Scholar]
- 14.Williams L. R., Varon S., Peterson G. M., Wictorin K., Fischer W., Björklund A., Gage F. H. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. 1986;83:9231–9235. doi: 10.1073/pnas.83.23.9231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Kromer L. F. Nerve growth factor treatment after brain injury prevents neuronal death. Science. 1987;235:214–216. doi: 10.1126/science.3798108. [DOI] [PubMed] [Google Scholar]
- 16.Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 1984;11:47–60. doi: 10.1016/0165-0270(84)90007-4. [DOI] [PubMed] [Google Scholar]
- 17.Moser M.-B., Moser E. I., Forrest E., Andersen P., Morris R. G. M. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. 1995;92:9697–9701. doi: 10.1073/pnas.92.21.9697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Hardman R., Evans D. J., Fellows L., Hayes B., Rupniak H. T., Barnes J. C., Higgins G. A. Evidence for recovery of spatial learning following entorhinal cortex lesions in mice. Brain Res. 1997;758:187–200. doi: 10.1016/S0006-8993(97)00223-0. [DOI] [PubMed] [Google Scholar]
- 19.Rogers D. C., Hunter A. J. Photothrombotic lesions of the rat cortex impair acquisition of the water maze. Pharmacol. Biochem. Behav. 1997;56:747–54. doi: 10.1016/S0091-3057(96)00430-3. [DOI] [PubMed] [Google Scholar]
- 20.Sutherland R. J., Whishaw I. Q., Kolb B. Contributions of cingulate cortex to two forms of spatial learning and memory. J. Neurosci. 1988;8:1863–1872. doi: 10.1523/JNEUROSCI.08-06-01863.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kolb B., Sutherland R. J., Whishaw I. Q. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav. Neurosci. 1983;97(1):13–27. doi: 10.1037//0735-7044.97.1.13. [DOI] [PubMed] [Google Scholar]
- 22.Whishaw I. Q., Kolb B. Decortication abolishes place but not cue learning in rats. Behav. Brain Res. 1984;11:123–134. doi: 10.1016/0166-4328(84)90135-9. [DOI] [PubMed] [Google Scholar]
- 23.Rasmussen T., Schliemann T., Sorensen J. C., Zimmer J., West M. J. Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol. Aging. 1996;17:143–7. doi: 10.1016/0197-4580(95)02032-2. [DOI] [PubMed] [Google Scholar]
- 24.Rapp P. R., Gallagher M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl. Acad. Sci. 1996;93:9926–30. doi: 10.1073/pnas.93.18.9926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Frick K. M., Baxter M. G., Markowska A. L., Olton D. S., Price D. L. Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiol. Aging. 1995;16:149–160. doi: 10.1016/0197-4580(94)00155-3. [DOI] [PubMed] [Google Scholar]
- 26.Denney N. W., Dew J. R., Kihlstrom J. F. An adult developmental study of the encoding of spatial location. Exp. Aging Res. 1992;18:25–32. doi: 10.1080/03610739208253907. [DOI] [PubMed] [Google Scholar]
- 27.Kirasic K. C., Allen G. L., Haggerty D. Age-related differences in adults’ macrospatial cognitive processes. Exp. Aging Res. 1992;18:33–39. doi: 10.1080/03610739208253908. [DOI] [PubMed] [Google Scholar]
- 28.Robbins T. W., James M., Owen A. M., Sahakian B. J., McInnes L., Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1994;5:266–81. doi: 10.1159/000106735. [DOI] [PubMed] [Google Scholar]
- 29.Schaie K. W., Willis S. L. Age difference patterns of psychometric intelligence in adulthood: generalizability within and across ability domains. Psychol. Aging. 1993;8:44–55. doi: 10.1037/0882-7974.8.1.44. [DOI] [PubMed] [Google Scholar]
- 30.Sharps M. J., Golin E. S. Memory for object location in young and elderly adults. J. Gerontol. 1987;42:336–341. doi: 10.1093/geronj/42.3.336. [DOI] [PubMed] [Google Scholar]
- 31.Bartus R. T., Dean R. L., III, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–417. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
- 32.Robinson J. K., Wiley R. G., Wenk G. L., Lappi D. A., Crawley J. N. 192IgG-saporin immunotoxin and ibotenic acid lesions of nucleus basalis and medial septum produce comparable deficits in delayed nonmatching to position in rats. Psychobiology. 1996;24:179–186. [Google Scholar]
- 33.Shen J., Barnes C. A., Wenk G. L., McNaughton B. L. Differential effects of selective immunotoxic lesions of medial septal cholinergic cells on spatial working and reference memory. Behav. Neurosci. 1996;110:1181–6. doi: 10.1037/0735-7044.110.5.1181. [DOI] [PubMed] [Google Scholar]
- 34.Waite J. J., Chen A. D., Wardlow M. L., Thal L.J. Behavioral and biochemical consequences of combined lesions of the medial septum/diagonal band and nucleus basalis in the rat when ibotenic acid, quisquatic acid, and AMPA are used. Exp. Neurol. 1994;130:214–29. doi: 10.1006/exnr.1994.1200. [DOI] [PubMed] [Google Scholar]
- 35.Janis L. S., Bishop T. W., Dunbar G. L. Medial septal lesions in rats produce permanent deficits for strategy selection in a spatial memory task. Behav. Neurosci. 1994;108:892–8. doi: 10.1037/0735-7044.108.5.892. [DOI] [PubMed] [Google Scholar]
- 36.Kelsey J. E., Vargas H. Medial septal lesions disrupt spatial, but not nonspatial, working memory in rats. Behav. Neurosci. 1993;107:565–574. doi: 10.1037/0735-7044.107.4.565. [DOI] [PubMed] [Google Scholar]
- 37.Baxter M. G., Bucci D. J., Gorman L. K., Wiley R. G., Gallagher M. Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behav. Neurosci. 1995;109:714–22. doi: 10.1037/0735-7044.109.4.714. [DOI] [PubMed] [Google Scholar]
- 38.Leanza G., Nilsson O. G., Wiley R. G., Bjorklund A. Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur. J. Neurosci. 1995;7:329–43. doi: 10.1111/j.1460-9568.1995.tb01068.x. [DOI] [PubMed] [Google Scholar]
- 39.Armstrong D. M., Sheffield R., Buzsaki G., Chen K. S., Hersh L. B., Nearing B. G. FH. Morphologic alterations of choline acetyltransferase-positive neurons in the basal forebrain of aged behaviorally characterized Fisher 344 rats. Neurobiol. Aging. 1993;14:457–470. doi: 10.1016/0197-4580(93)90104-J. [DOI] [PubMed] [Google Scholar]
- 40.Fischer W., Björklund A., Chen K., Gage F. H. NGF improves spatial memory in aged rodents as a function of age. J. Neurosci. 1991;11:1889–1906. doi: 10.1523/JNEUROSCI.11-07-01889.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Markowska A. L., Koliatsos V. E., Breckler S. J., Price D. L., Olton D. S. Human nerve growth factor improves spatial memory in aged but not in young rats. J. Neurosci. 1994;14:4815–4824. doi: 10.1523/JNEUROSCI.14-08-04815.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Chen K. S., Masliah E., Mallory M., Gage F. H. Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion. Neurosci. 1995;68:19–27. doi: 10.1016/0306-4522(95)00099-5. [DOI] [PubMed] [Google Scholar]
- 43.Pelleymounter M. A., Cullen M. J., Baker M. B., Gollub M., Wellman C. The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. Mol. Chem. Neuropathol. 1996;29:211–26. doi: 10.1007/BF02815003. [DOI] [PubMed] [Google Scholar]
- 44.Chen K. S., Gage F. H. Somatic gene transfer of NGF to the aged brain: behavioral and morphological amelioration. J. Neurosci. 1995;15:2819–2825. doi: 10.1523/JNEUROSCI.15-04-02819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Martinez-Serrano A., Fischer W., Björklund A. Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron. 1995;15:473–484. doi: 10.1016/0896-6273(95)90051-9. [DOI] [PubMed] [Google Scholar]
- 46.Martinez-Serrano A., Fischer W., Soderstrom S., Ebendal T., Björklund A. Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc. Natl. Acad. Sci. 1996;93:6355–60. doi: 10.1073/pnas.93.13.6355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Lindner M. D., Kearns C. E., Winn S. R., Frydel B., Emerich D. F. Effects of intraventricular encapsulated hNGF-secreting fibroblasts in aged rats. Cell Transplantation. 1996;5:205–223. doi: 10.1016/0963-6897(95)02029-2. [DOI] [PubMed] [Google Scholar]
- 48.Bäckman C., Rose G. M., Hoffer B. J., Henry M. A., Bartus R. T., Friden P., Granholm A. C. Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J. Neurosci. 1996;16:5437–42. doi: 10.1523/JNEUROSCI.16-17-05437.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Fischer W., Sirevaag A., Wiegand S. J., Lindsay R. M., Björklund A. Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. 1994;91:8607–11. doi: 10.1073/pnas.91.18.8607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Markowska A. L., Price D., Koliatsos V. E. Selective effects of nerve growth factor on spatial recent memory as assessed by a delayed nonmatching-to-position task in the water maze. J. Neurosci. 1996;16:3541–8. doi: 10.1523/JNEUROSCI.16-10-03541.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Means L. W., Kennard K. J. Working memory and the aged rat: deficient two-choice win-stay water-escape acquisition and retention. Physiol. Behav. 1991;49:301–307. doi: 10.1016/0031-9384(91)90047-R. [DOI] [PubMed] [Google Scholar]
- 52.Caprioli A., Ghirardi O., Giuliani A., Ramacci M. T., Angelucci L. Spatial learning and memory in the radial maze: A longitudinal study in rats from 4 to 25 months of age. Neurobiol. Aging. 1991;12:605–607. doi: 10.1016/0197-4580(91)90093-Y. [DOI] [PubMed] [Google Scholar]
- 53.Williams L. R., Rylett R. J., Moises H. C., Tang A. H. Exogenous NGF affects cholinergic transmitter function and Y-maze behavior in aged Fischer 344 male rats. Canad. J. Neurol. Sci. 1991;18:403–7. doi: 10.1017/s0317167100032546. [DOI] [PubMed] [Google Scholar]
- 54.Scali C., Casamenti F., Pazzagli M., Bartolini L., Pepeu G. Nerve growth factor increases extracellular acetylcholine levels in the parietal cortex and hippocampus of aged rats and restores object recognition. Neurosci. Lett. 1994;170:117–120. doi: 10.1016/0304-3940(94)90253-4. [DOI] [PubMed] [Google Scholar]
- 55.Lin L.-F. H., Doherty D. H., Lile J. D., Bektesh S., Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–1132. doi: 10.1126/science.8493557. [DOI] [PubMed] [Google Scholar]
- 56.Bowenkamp K. E., Lapchak P. A., Hoffer B. J., Miller P. J., Bickford P. C. Intracerebro-ventricular glial cell line-derived neurotrophic factor improves motor function and supports nigrostriatal dopamine neurons in bilaterally 6-hydroxydopamine lesioned rats. Exp. Neurol. 1997;145:104–17. doi: 10.1006/exnr.1997.6436. [DOI] [PubMed] [Google Scholar]
- 57.Hebert M. A., Gerhardt G.A. Behavioral and neurochemical effects of intranigral administration of glial cell line-derived neurotrophic factor on aged Fischer 344 rats. J. Pharmacol. Exp. Ther. 1997;282:760–8. [PubMed] [Google Scholar]
- 58.Bowenkamp K. E., Lapchak P. A., Hoffer B. J., Bickford P. C. Glial cell line-derived neurotrophic factor reverses motor impairment in 16–17 month old rats. Neurosci. Lett. 1996;211:81–4. doi: 10.1016/0304-3940(96)12729-4. [DOI] [PubMed] [Google Scholar]
- 59.Emerich D. F., Plone M., Francis J., Frydel B. R., Winn S. R., Lindner M. D. Alleviation of behavioral deficits in aged rodents following implantation of encapsulated GDNF-producing fibroblasts. Brain Res. 1996;736:99–110. doi: 10.1016/S0006-8993(96)00683-X. [DOI] [PubMed] [Google Scholar]
- 60.Lapchak P. A., Miller P. J., Jiao S. Glial cell line-derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats. Neurosci. 1997;77:745–52. doi: 10.1016/S0306-4522(96)00492-7. [DOI] [PubMed] [Google Scholar]
- 61.Phelps C. H., Gage F. H., Growdon J. H., Hefti F., Harbaugh R., Johnston M. V., Khachaturian Z. S., Mobley W. C., Price D. L., Raskind M., Simpkins J., Thal L. J., Woodcock J. Potential use of nerve growth factor to treat Alzheimer’s disease. Neurobiol. Aging. 1989;10:205–207. doi: 10.1016/0197-4580(89)90032-8. [DOI] [PubMed] [Google Scholar]
- 62.Wilcock G. K., Harrold P. L. Treatment of Alzheimer’s disease: future directions. Acta Neurol. Scand. Suppl. 1996;165:128–36. doi: 10.1111/j.1600-0404.1996.tb05883.x. [DOI] [PubMed] [Google Scholar]
- 63.Zhang Z., Miyoshi Y., Lapchak P. A., Collins F., Hilt D., Lebel C., Kryscio R., Gash D. M. Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J. Pharmacol. Exp. Ther. 1997;282:1396–401. [PubMed] [Google Scholar]
- 64.Olson L., Nordberg A., von Hoist H., Backman L., Ebendal T., Alafuzoff I., Amberla K., Hartvig P., Herlitz A., Lilja A., et al. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report) J. Neural. Transm. Park. Dis. Dement. Sect. 1992;4:79–95. doi: 10.1007/BF02257624. [DOI] [PubMed] [Google Scholar]
- 65.Seiger A., Nordberg A., von Hoist H., Backman L., Ebendal T., Alafuzoff I., Amberla K., Hartvig P., Herlitz A., Lilja A., et al. Intracranial infusion of purified nerve growth factor to an Alzheimer patient: the first attempt of a possible future treatment strategy. Behav. Brain Res. 1993;57:255–61. doi: 10.1016/0166-4328(93)90141-C. [DOI] [PubMed] [Google Scholar]
- 66.Hoffer B., Olson L. Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques. J. Neural. Transm. Suppl. 1997;49:1–10. doi: 10.1007/978-3-7091-6844-8_1. [DOI] [PubMed] [Google Scholar]
- 67.ALS CNTF Treatment Study Group A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurol. 1996;46:1244–9. doi: 10.1212/wnl.46.5.1244. [DOI] [PubMed] [Google Scholar]
- 68.Williams L. R. Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp. Neurol. 1991;113:31–37. doi: 10.1016/0014-4886(91)90143-Z. [DOI] [PubMed] [Google Scholar]
- 69.Rueff A., Dawson A. J., Mendell L. M. Characteristics of nerve growth factor induced hyper-algesia in adult rats: dependence on enhanced bradykinin-1 receptor activity but not neurokinin-1 receptor activation. Pain. 1996;66:359–72. doi: 10.1016/0304-3959(96)03060-6. [DOI] [PubMed] [Google Scholar]
- 70.Della Seta D., de Acetis L., Aloe L., Alleva E. NGF effects on hot plate behaviors in mice. Pharmacol. Biochem. Behav. 1994;49:701–5. doi: 10.1016/0091-3057(94)90090-6. [DOI] [PubMed] [Google Scholar]
- 71.Alleva E., Aloe L., Bigi S. An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates. Rev. Neurosci. 1993;4:41–62. doi: 10.1515/revneuro.1993.4.1.41. [DOI] [PubMed] [Google Scholar]
- 72.Levi Montalcini R., Skaper S. D., Dal Toso R., Petrelli L., Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996;19:514–20. doi: 10.1016/S0166-2236(96)10058-8. [DOI] [PubMed] [Google Scholar]
- 73.Winkler J., Ramirez G. A., Kuhn H. G., Peterson D. A., Day Lollini P. A., Stewart G. R., Tuszynski M. H., Gage F. H., Thal L.J. Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann. Neurol. 1997;41:82–93. doi: 10.1002/ana.410410114. [DOI] [PubMed] [Google Scholar]
- 74.Lapchak P. A., Araujo D. M., Hilt D. C., Sheng J., Jiao S. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson’s disease. Brain Res. 1997;777:153–60. doi: 10.1016/S0006-8993(97)01100-1. [DOI] [PubMed] [Google Scholar]
- 75.Choi-Lundberg D. L., Lin Q., Chang Y. N., Chiang Y. L., Hay C. M., Mohajeri H., Davidson B. L., Bohn M. C. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science. 1997;275:838–41. doi: 10.1126/science.275.5301.838. [DOI] [PubMed] [Google Scholar]
- 76.Bilang Bleuel A., Revah F., Colin P., Locquet I., Robert J. J., Mallet J., Horellou P. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. 1997;94:8818–23. doi: 10.1073/pnas.94.16.8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
