Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2004 Aug;21(8):301–306. doi: 10.1023/B:JARG.0000043704.10845.87

In Vitro Effect of Cyclic Adenosine 3′, 5′-Monophosphate (cAMP) on Early Human Ovarian Follicles

Pu Zhang 1, Henna Louhio 2, Timo Tuuri 2, Jari Sjöberg 1, Julius Hreinsson 1, Evelyn E Telfer 3, Outi Hovatta 1
PMCID: PMC3455439  PMID: 15568331

Abstract

Purpose: To test the effect of cyclic adenosine 3′, 5′-monophosphate (cAMP) on early human ovarian follicles during prolonged culture period.

Methods: Donated ovarian biopsies from 16 women undergoing gynecological laparoscopy were cut into slices and cultured in parallel for 1, 2, or 3 weeks in the presence and the absence of 0.5 mM 8-bromo-cAMP. The developmental stages, sizes, and viability of the follicles were recorded from histological sections of all samples.

Results: On day 14, cortical slices cultured with 8-bromo-cAMP showed a significantly higher proportion of secondary follicles (50.0% vs. 20.0%) and a lower proportion of primordial follicles (9.7% vs. 26.7%) when compared with those cultured without 8-bromo-cAMP. On day 21, the proportion of viable follicles in cortical slices with 8-bromo-cAMP treatment was significantly higher than that without 8-bromo-cAMP treatment (79.6% vs. 55.2%).

Conclusion: CyclicAMP promoted folliculogenesis and follicle survival during 14–21 days' culture of human ovarian cortical slices.

Keywords: cAMP, human, organ culture, ovarian follicles

Full Text

The Full Text of this article is available as a PDF (308.2 KB).

REFERENCES

  • 1.Hovatta O. Cryopreservation and culture of human pri-mordial and primary ovarian follicles. Mol Cell Endocrinol. 2000;169:95–97. doi: 10.1016/s0303-7207(00)00359-2. [DOI] [PubMed] [Google Scholar]
  • 2.Wright CS, Hovatta O, Margara R, Trew G, Winston RM, Franks S, Hardy K. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14:1555–1562. doi: 10.1093/humrep/14.6.1555. [DOI] [PubMed] [Google Scholar]
  • 3.Hovatta O, Silye R, Abir R, Krausz T, Winston RM. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12:1032–1036. doi: 10.1093/humrep/12.5.1032. [DOI] [PubMed] [Google Scholar]
  • 4.Louhio H, Hovatta O, Sjoberg J, Tuuri T. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol HumReprod. 2000;6:694–698. doi: 10.1093/molehr/6.8.694. [DOI] [PubMed] [Google Scholar]
  • 5.Hovatta O, Wright C, Krausz T, Hardy K, Winston RM. Human primordial, primary and secondary ovarian follicles in long-term culture: Effect of partial isolation. Hum Reprod. 1999;14:2519–2524. doi: 10.1093/humrep/14.10.2519. [DOI] [PubMed] [Google Scholar]
  • 6.Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87:316–321. doi: 10.1210/jcem.87.1.8185. [DOI] [PubMed] [Google Scholar]
  • 7.Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signal-ing pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci. 2000;5:D678–D693. doi: 10.2741/skalhegg. [DOI] [PubMed] [Google Scholar]
  • 8.Haus-Seuffert P, Meisterernst M. Mechanisms of transcriptional activation of cAMP-responsive element-binding protein CREB. Mol Cell Biochem. 2000;212:5–9. [PubMed] [Google Scholar]
  • 9.Richards JS, Hedin L. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu Rev Physiol. 1988;50:441–463. doi: 10.1146/annurev.ph.50.030188.002301. [DOI] [PubMed] [Google Scholar]
  • 10.Conti M. Specificity of the cyclic adenosine 3,5-monophosphate signal in granulosa cell function. Biol Reprod. 2002;67:1653–1661. doi: 10.1095/biolreprod.102.004952. [DOI] [PubMed] [Google Scholar]
  • 11.Hartshorne GM, Sargent IL, Barlow DH. Growth rates and antrum formation of mouse ovarian follicles in vitro in response to follicle-stimulating hormone, relaxin, cyclic AMPand hypoxanthine. Hum Reprod. 1994;9:1003–1012. doi: 10.1093/oxfordjournals.humrep.a138624. [DOI] [PubMed] [Google Scholar]
  • 12.Parborell F, Dain L, Tesone M. Gonadotropin-releasing hor-mone agonist affects rat ovarian follicle development by interfering with FSH and growth factors on the prevention of apoptosis. Mol Reprod Dev. 2001;60:241–247. doi: 10.1002/mrd.1084. [DOI] [PubMed] [Google Scholar]
  • 13.Kikuchi N, Andoh K, Abe Y, Yamada K, Mizunuma H, Ibuki Y. Inhibitory action of leptin on early follicular growth differs in immature and adult female mice. Biol Reprod. 2001;65:66–71. doi: 10.1095/biolreprod65.1.66. [DOI] [PubMed] [Google Scholar]
  • 14.Packer AI, Hsu YC, Besmer P, Bachvarova RF. The lig-and of the c-kit receptor promotes oocyte growth. Dev Biol. 1994;161:194–205. doi: 10.1006/dbio.1994.1020. [DOI] [PubMed] [Google Scholar]
  • 15.Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–4271. doi: 10.1210/endo.140.9.6994. [DOI] [PubMed] [Google Scholar]
  • 16.Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–152. doi: 10.1530/ror.0.0050143. [DOI] [PubMed] [Google Scholar]
  • 17.Knecht M, Ranta T, Catt KJ. Granulosa cell differentiation in vitro: Induction and maintenance of follicle-stimulating hormone receptors by adenosine 3,5-monophosphate. Endocrinology. 1983;113:949–956. doi: 10.1210/endo-113-3-949. [DOI] [PubMed] [Google Scholar]
  • 18.Mayerhofer A, Dissen GA, Costa ME, Ojeda SR. A role for neurotransmitters in early follicular development: In-duction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary. Endocrinology. 1997;138:3320–3329. doi: 10.1210/endo.138.8.5335. [DOI] [PubMed] [Google Scholar]
  • 19.George FW, Ojeda SR. Vasoactive intestinal peptide en-hances aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone. Proc Natl Acad Sci USA. 1987;84:5803–5807. doi: 10.1073/pnas.84.16.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Gougeon A, Testart J. Germinal vesicle breakdown in oocytes of human atretic follicles during the menstrual cycle. J Reprod Fertil. 1986;78:389–401. doi: 10.1530/jrf.0.0780389. [DOI] [PubMed] [Google Scholar]
  • 21.Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81:433–442. doi: 10.1530/jrf.0.0810433. [DOI] [PubMed] [Google Scholar]
  • 22.de Bruin JP, Dorland M, Spek ER, Posthuma G, van Haaften M, Looman CW, te Velde ER. Ultrastructure of the resting ovarian follicle pool in healthy young women. Biol Reprod. 2002;66:1151–1160. doi: 10.1095/biolreprod66.4.1151. [DOI] [PubMed] [Google Scholar]
  • 23.Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82:3748–3751. doi: 10.1210/jcem.82.11.4346. [DOI] [PubMed] [Google Scholar]
  • 24.Aittomaki K, Herva R, Stenman UH, Juntunen K, Ylostalo P, Hovatta O, de la Chapelle A. Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab. 1996;81:3722–3726. doi: 10.1210/jcem.81.10.8855829. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES