Abstract
Aging is accompanied by a steady increase in the incidence of spontaneous tumors and a decline in immune function. Calorie restriction (CR) or supplementation with ω-3 fats prolongs life span, suppresses tumorigenesis, and ameliorates immune function in a variety of experimental models. We suggest that decreased oxidant stress and upregulation of apoptosis mediate the effects of calorie restriction on immunity and longevity. CR prolongs life span in several animal models and our studies have examined the effects of CR on the immune system and on tumorigenesis. CR maintains naive T cells, prevents the rise in “double-negative” T cells, maintains lymphocyte responsiveness to mitogens, and preserves Dexamethasone induced apoptosis in spleen cells of MRL/Ipr mice. CR also modulates the expression of inflammatory mediators and cytokines. CR decreases the Sjögren’s syndrome-like chronic inflammation of salivary glands of B/W animals while increasing expression of the immunosuppressive cytokine TGFβ1 and decreasing expression of the pro-inflammatory cytokines IL-6 and TNFα. The autoimmune disease in the B/W mouse also affects the kidneys, and we find that renal expression of platelet derived growth factor-A, (PDGF-A) and thrombin receptor are decreased in CR animals. Similarly, CR decreases the expression and localization of plasminogen activator inhibitor type 1 in glomeruli of B/W animals. CR also modulates expression and function of androgen receptors and the binding of insulin to liver nuclei. Finally, CR suppresses the development of breast tumors in the Ras oncomouse. These effects of calorie restriction are paralleled in short-lived B/W animals fed diets supplemented with ω-3 fatty acids. Omega-3 fatty acids induce the expression of hepatic antioxidant enzymes, and enhance apoptosis in lymphocytes of B/W animals.
Full Text
The Full Text of this article is available as a PDF (768.1 KB).
References
- 1.Fernandes G., Venkatraman J.T. Dietary restriction: Effect on immunological function and aging. In: Klurfeld D. M., editor. Human Nutrition: A Comprehensive Treatise. New York, NY: Plenum Press; 1993. pp. 91–120. [Google Scholar]
- 2.Fernandes G., Chandrasekar B., Troyer D., Venkatraman J., Good R. Dietary lipids and calorie restriction effect mammary tumor incidence and gene expression in mouse mammary tumor virus/v-Ha-ras transgenic mice. Proc Natl Acad Sci USA. 1995;92:6494–6498. doi: 10.1073/pnas.92.14.6494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Weindruch R., Walford R. The Retardation Of Aging And Disease By Dietary Restriction. Springfield, IL: Charles C. Thomas; 1988. p. 436. [Google Scholar]
- 4.McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of the life span and upon the ultimate body size. J. Nutr. 1935;10:63–79. [PubMed] [Google Scholar]
- 5.Troyer D.A., Chandrasekar R., Thinness T., Stone A., Loskutoff D.A., Fernandes G. Effect of energy intake on type I plasminogen activator inhibitor levels in glomeruli of lupus prone B/W mice. Am. J. Pathol. 1995;146:111–120. [PMC free article] [PubMed] [Google Scholar]
- 6.Turturro A., Hart R. Dietary alteration in the rates of cancer and aging. Exp. Gerontol. 1992;27:583–592. doi: 10.1016/0531-5565(92)90013-P. [DOI] [PubMed] [Google Scholar]
- 7.Sprott R.L. Diet and calorie restriction. Exp. Gerontol. 1997;32:205–214. doi: 10.1016/S0531-5565(96)00065-4. [DOI] [PubMed] [Google Scholar]
- 8.Hart R.W., Leakey J.E.A., Chou M., Duffy P.H., Allaben W.T., Feuers R.J. Modulation of chemical toxicity by modification of caloric intake. In: Jacobs M.M., editor. Exercise, Calories, Fat, and Cancer. New York, New York: Plenum Press; 1992. [DOI] [PubMed] [Google Scholar]
- 9.Fernandes G., Friend P., Yunis E.J., Good R.A. Influence of dietary restriction on immunologic function and renal disease in NZBxNZWF1 mice. Proc. Natl. Acad. Sci., USA. 1978;75:1500–1504. doi: 10.1073/pnas.75.3.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Chandrasekar B., McGuff H.S., Aufdemorte T.B., Troyer D.A., Talal N., Fernandes G. Effects of calorie restriction on transforming growth factor-beta-1 and proinflammatory cytokines in murine Sjögren’s syndrome. Clin Immun & Immunopath. 1995;76:291–296. doi: 10.1006/clin.1995.1128. [DOI] [PubMed] [Google Scholar]
- 11.Chandrasekar B., Troyer D.A., Venkatraman J.T., Fernandes G. Tissue specific regulation of TGF-β by omega-α lipid-rich krill oil in autoimmune murine lupus. Nutr. Res. 1996;16:489–503. doi: 10.1016/0271-5317(96)00030-9. [DOI] [Google Scholar]
- 12.Kehrl J.H., Wakefield L.M., Roberts A.B., Jakowlew A.B., and Alvarez-Mon M.: Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation ofT-cell growth. J. Exp. Med. 1037, 1986. [DOI] [PMC free article] [PubMed]
- 13.Kehrl J.H., Thevenin C., Rieckmann P., Fauci A.S. Transforming growth factor β suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. Journal of Immunol. 1991;146:4016–4023. [PubMed] [Google Scholar]
- 14.Troyer D.A., Chandrasekar B., Barnes J.L., Fernandes G. Calorie restriction decreases platelet-derived growth factor (PDGF)-A and thrombin receptor mRNA expression in autoimmune murine lupus nephritis. Clin Exp Immunol. 1997;108:58–62. doi: 10.1046/j.1365-2249.1997.d01-970.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Ogawa N., Dang H., Talal N. Apoptosis and auto immunity. J Autoimmun. 1995;8:1–19. doi: 10.1006/jaut.1995.0001. [DOI] [PubMed] [Google Scholar]
- 16.Luan H., Zhao W., Chandrasekar B., Fernandes G. Calorie restriction modulates lymphocyte subset phenotype and increases apoptosis in MRL/Ipr mice. Immunol Lett. 1995;47:181–186. doi: 10.1016/0165-2478(95)00091-5. [DOI] [PubMed] [Google Scholar]
- 17.Venkatraman J.T., Attwood V.G., Turturro A., Hart R.W., Fernandes G. Maintenance of virgin T cells and immune functions by food restriction during aging in long-lived B6D2F1 female mice. Aging, Immunol. & Infect. Dis. 1994;5:13–25. [Google Scholar]
- 18.Janeway C.A., Jr. Self superantigens? Cell. 1990;63:653–661. doi: 10.1016/0092-8674(90)90130-7. [DOI] [PubMed] [Google Scholar]
- 19.Callahan J.E., Herman A., Herman W. K.J., Herman P. M. Stimulation of B10.BR T cells with super antigenic staphylococcal toxins. J Immunol. 1990;144:2473–2479. [PubMed] [Google Scholar]
- 20.Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990;248:705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
- 21.Kahn C.R., White M.F. The insulin receptor and the molecular mechanisms of insulin action. Journal of Clinical Investigation. 1988;82:1151–1156. doi: 10.1172/JCI113711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Maeda H., Gleiser C.A., Masaro E.J., Murata I., McMahan C.A., Yu B.P. Nutritional influence on aging of Fischer 344 rats: II. Pathology. J. Gerontol.: Bio. Sci. 1985;40:671–688. doi: 10.1093/geronj/40.6.671. [DOI] [PubMed] [Google Scholar]
- 23.Yu B.P., Masoro E.J., McMahan C.A. Nutritional influences on aging of Fischer-344 rats: I. physical, metabolic, and longevity characteristics. J. Gerontol. 1985;40:657–670. doi: 10.1093/geronj/40.6.657. [DOI] [PubMed] [Google Scholar]
- 24.Fernandes G., Flescher E., Venkatraman J.T. Modulation of cellular immunity, fatty acid composition, fluidity and Ca2+ influx by food restriction in aging rats. Age: Immunol. & Infect. Dis. 1990;2:117–125. [Google Scholar]
- 25.Dudl R.J., Ensinck J.W. Insulin and glucagon relationships during aging in man. Metabolism. 1977;26:33–41. doi: 10.1016/0026-0495(77)90125-1. [DOI] [PubMed] [Google Scholar]
- 26.Venkatraman J.T., Fernandes G. Influence of food restriction and aging on the binding of insulin to liver nuclei in Fischer-344 rats. Age. 1991;14:45–51. [Google Scholar]
- 27.Chatterjee B., Fernandes G., Yu B.P., Song C., Kim J.M., Demyan W., Roy A.K. Calorie restriction delays age-dependent loss in androgen responsiveness of the rat liver. FASEB J. 1989;3:169–173. doi: 10.1096/fasebj.3.2.2464518. [DOI] [PubMed] [Google Scholar]
- 28.Venkatraman J.T., Fernandes G. Modulation of age-related alterations in membrane composition and receptor associated immune functions by food restriction. Mech. Aging & Develop. 1992;63:27–44. doi: 10.1016/0047-6374(92)90014-5. [DOI] [PubMed] [Google Scholar]
- 29.Fernandes G., Venkatraman J., Turturro A., Attwood V.G., Hart R.W. Effect of food restriction on life span and immune functions in long-lived Fischer-344 X Brown Norway F1 rats. Journal of Clinical Immunology. 1997;17:85–95. doi: 10.1023/A:1027344730553. [DOI] [PubMed] [Google Scholar]
- 30.Kelley, D.S., Bendich, A., Essential nutrients and immunologic functions. Am J Clin Nutr 63: 994S-996S, 1976. [DOI] [PubMed]
- 31.Bogden J.D. Studies on micronutrient supplements and immunity in older people. Nutr Rev. 1995;53(4Pt2):S59–S64. doi: 10.1111/j.1753-4887.1995.tb01518.x. [DOI] [PubMed] [Google Scholar]
- 32.Murasko D.M., Gold M.J., Hessen M.T., Kaye D. Immune reactivity, morbidity and mortality of elderly humans. Aging: Immunol. Inf. Dis. 1990;2:171–179. [Google Scholar]
- 33.Franceschi C., Monti D., Sansoni P., Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunot. Today. 1995;16:12–16. doi: 10.1016/0167-5699(95)80064-6. [DOI] [PubMed] [Google Scholar]
- 34.Fernandes G., Yunis E.J., Good R.A. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature. 1976;263:504–507. doi: 10.1038/263504b0. [DOI] [PubMed] [Google Scholar]
- 35.Hursting S., Perkins S., and Phang J.: Calorie restriction delays spontaneous tumerogenesis in p53-knockout transgenic mice. Proc Natl Acad Sci USA 7036–7040, 1994. [DOI] [PMC free article] [PubMed]
- 36.Troyer D., Fernandes G. Nutrition and Apoptosis. Nutr Res. 1996;16:1959–1988. doi: 10.1016/S0271-5317(96)00219-9. [DOI] [Google Scholar]
- 37.Warner H.R., Fernandes G., Wang E. A unifying hypothesis to explain the retardation of aging and tumorigenesis by caloric restriction. J. Gerontol. 1995;50A:B107–B109. doi: 10.1093/gerona/50a.3.b107. [DOI] [PubMed] [Google Scholar]
- 38.Yu B.P., Lee D.W., Marler C.G., Choi J.-H. Mechanisms of food restriction: Protection of cellular homeostasis. PSEBM. 1990;193:13–15. doi: 10.3181/00379727-193-42982. [DOI] [PubMed] [Google Scholar]
- 39.Feuers R.J., Weindruch R., Hart R.W. Calorie restriction, aging and antioxidant enzymes. Mutation Research. 1993;295:191–200. doi: 10.1016/0921-8734(93)90020-4. [DOI] [PubMed] [Google Scholar]
- 40.Byun D.S., Venkatraman J., Yu B., Fernandes G. Modulation of antioxidant activities and immune response by food restriction in aging Fischer-344 rats. Aging Clin. Expt. Res. 1995;7:40–48. doi: 10.1007/BF03324291. [DOI] [PubMed] [Google Scholar]
- 41.Venkatraman J., and Fernandes G.: Mechanisms of delayed autoimmune disease in B/W mice by n-3 lipids and food restriction. Nutri. Immunol. 309–323, 1991.
- 42.Chung O.K., Pomeranz Y. Recent trends in usage of fats and oits as functional ingredients in the baking industry. JAOCS. 1983;60:1848–1851. [PubMed] [Google Scholar]
- 43.Simopoulos A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991;54:438–463. doi: 10.1093/ajcn/54.3.438. [DOI] [PubMed] [Google Scholar]
- 44.Zhu B.Q., Parmley W.W. Modification of experimental and clinical atherosclerosis by dietary fish oil. Am Heart Journal. 1990;119:168–178. doi: 10.1016/s0002-8703(05)80097-3. [DOI] [PubMed] [Google Scholar]
- 45.Leaf A., Weber P.C. Cardiovascular effects of n-3 fatty acids. N Engl J Med. 1988;318:549–557. doi: 10.1056/NEJM198803033180905. [DOI] [PubMed] [Google Scholar]
- 46.Fernandes G., Jolly C.A. Nutrition and autoimmunedisease. Nutrition Reviews. 1998;56:S161–S169. doi: 10.1111/j.1753-4887.1998.tb01635.x. [DOI] [PubMed] [Google Scholar]
- 47.Galli C., Butrum C. Dietary w-3 fatty acids and cancer. World Rev. Nutr. & Dieter. 1991;66:446–461. doi: 10.1159/000419313. [DOI] [PubMed] [Google Scholar]
- 48.Connor W.E., Connor S.L. Diet, atherosclerosis, and fish oil. Advances in Internal Med. 1990;35:139–171. [PubMed] [Google Scholar]
- 49.Fernandes G., Venkatraman J., Troyer D.A. Interaction of Vitamin E with n-6 and n-3 poly-unsaturated fatty acids. International Society for the Study of Fatty Acids and Lipids. 1996;3:10–13. [Google Scholar]
- 50.Sardesai V. Nutritional role of polyunsaturated fatty acids. J. Nutr. Biochem. 1992;3:154–165. doi: 10.1016/0955-2863(92)90110-5. [DOI] [Google Scholar]
- 51.Sardesai V. Biochemical and nutritional aspects of eicosanoids. J. Nutr. Biochem. 1992;3:562–579. doi: 10.1016/0955-2863(92)90050-S. [DOI] [Google Scholar]
- 52.Talal N., Steinberg A. The pathogenesis of autoimmunity in NZB mice. Curr. Microbiol. Immunol. 1974;64:79–103. doi: 10.1007/978-3-642-65848-8_3. [DOI] [PubMed] [Google Scholar]
- 53.Prickett J.D., Robinson D.R., Steinberg A.D. Dietary enrichment with the PUFA Eicosapentanoic prevents proteinuria and prolongs survival in NZBxNZWF1 mice. J. Clin. Invest. 1981;658:556–559. doi: 10.1172/JCI110288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Fernandes G. Dietary lipids and risk of autoimmune disease. Clin. Immunol. Immunopathol. 1994;72:193–197. doi: 10.1006/clin.1994.1129. [DOI] [PubMed] [Google Scholar]
- 55.Fernandes G., Venkatraman J.T. Role of omega-3 fatty acids in health and disease. Nutr. Res. 1993;13:S19–S45. [Google Scholar]
- 56.Zock P.L., Katan M.B. Trans fatty acids, lipoproteins, and coronary risk. Can J Phys Pharm. 1997;75:211–216. doi: 10.1139/cjpp-75-3-211. [DOI] [PubMed] [Google Scholar]
- 57.Durgam V.R., Fernandes G. The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett. 1997;116:121–130. doi: 10.1016/S0304-3835(97)00192-4. [DOI] [PubMed] [Google Scholar]
- 58.Ip, C. Review of the effects of trans fatty acids, oleic acid, n-3 polyunsaturated fatty acids, and conjugated linoleic acid on mammary carcinogenesis in animals. Am J Clin Nutr 1997; 66:1523S-1529S [DOI] [PubMed]
- 59.Trichopoulou A., Lagiou P. Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. Nuitrition Reviews. 1997;55:383–389. doi: 10.1111/j.1753-4887.1997.tb01578.x. [DOI] [PubMed] [Google Scholar]
- 60.Robinson D., Xu L., Tateno S., Guo M., Colvin R. Suppression of autoimmune disease by dietary n-3 fatty acids. J Lipid Res. 1993;34:1435–1444. [PubMed] [Google Scholar]
- 61.Chandrasekar B., Fernandes G. Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by ω-3 lipids in murine lupus nephritis. Biochem. Biophy. Res. Com. 1994;200:893–898. doi: 10.1006/bbrc.1994.1534. [DOI] [PubMed] [Google Scholar]
- 62.Chandrasekar B., Troyer D.A., Venkatraman J.T., Fernandes G. Dietary omega-3 lipids delay the onset and progression of autoimmune lupus nephritis by inhibiting transforming growth factor-beta mRNA and protein expression. J Autoimmunity. 1995;8:381–393. doi: 10.1006/jaut.1995.0030. [DOI] [PubMed] [Google Scholar]
- 63.Fernandes G., Chandrasekar B., Venkatraman J., Tomar V., Zhao W. Increased TGFβ and decreased oncogene expression by ω-3 lipids in the spleen delays autoimmune disease in B/W mice. J. Immunol. 1994;152:5979–5987. [PubMed] [Google Scholar]
- 64.Venkatraman J.T., Chandrasekar B., Kim J.D., Fernandes G. Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes ifn autoimmune-prone NZBxNZWF1 mice. Lipids. 1994;29:561–567. doi: 10.1007/BF02536628. [DOI] [PubMed] [Google Scholar]
- 65.Nath K., Fischereder M., Hostetter T. The role of oxidants in progressive renal injury. Kidney International. 1994;45:S111–S115. [PubMed] [Google Scholar]
- 66.Femandes G., Chandrasekar B., Luan X., Troyer D. Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids. Lipids. 1996;31:S91–S96. doi: 10.1007/BF02637058. [DOI] [PubMed] [Google Scholar]
- 67.Fernandes G., Chandrasekar B., Mountz J.D., Zhao W. Modulation of Fas apoptotic gene expression in spleens of B/W mice by the source of dietary lipids with and without calorie restriction. FASEB J. 1995;9:A787. [Google Scholar]
- 68.Emlen W., Niebur J., Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J. Immunol. 1994;152:3685–3692. [PubMed] [Google Scholar]
- 69.Inomata T., Nakamura T. Influence of adrenalectomy on the development of the neonatal thymus in the rat. Biol. Neonate. 1989;55:238–247. doi: 10.1159/000242924. [DOI] [PubMed] [Google Scholar]
- 70.Sabatini F., Masoro E.J., McMahan C.A., Kuhn R.W. Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J. Gerontol. Biol. Sci. 1991;46:B171–B179. doi: 10.1093/geronj/46.5.b171. [DOI] [PubMed] [Google Scholar]
- 71.Gruber J., Roswitha S., Hu Y.H., Beug H., Wick G. Thymocyte apoptosis induced by elevated endogenous corticosteroid levels. Eur. J. Immunol. 1994;24:1115–1121. doi: 10.1002/eji.1830240516. [DOI] [PubMed] [Google Scholar]
- 72.Fernandes G., Yunis E.J., Good R.A. Depression of cytotoxic T cell subpopulation in mice by hydrocortisone treatment. Clin. Immunol. Immunopathol. 1975;4:303–314. doi: 10.1016/0090-1229(75)90066-5. [DOI] [PubMed] [Google Scholar]
- 73.Vacchio M., Papadapoulos V., Ashwell J.D. Steroid production in the thymus: Implications for thymocyte selection. J. Exp. Med. 1994;179:1835–1846. doi: 10.1084/jem.179.6.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Nelson J.F. Neuroendocrine Involvement in the retardation of aging by dietary restriction: A hypothesis. In: YU B.P., editor. Modulation by Diet Restriction. Boca Raton, FL: CRC Press; 1994. [Google Scholar]