Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(11):3577–3581. doi: 10.1073/pnas.81.11.3577

Mutations in the dopa decarboxylase gene affect learning in Drosophila.

B L Tempel, M S Livingstone, W G Quinn
PMCID: PMC345552  PMID: 6427773

Abstract

Fruit flies synthesize several monoamine neurotransmitters. Dopa decarboxylase (Ddc) mutations affect synthesis of two of these, dopamine and serotonin. Both transmitters are implicated in vertebrate and invertebrate learning. Therefore, we bred flies of various Ddc genotypes and tested their learning ability in positively and negatively reinforced learning tasks. Mutations in the Ddc gene diminished learning acquisition approximately in proportion to their effect on enzymatic activity. Courtship and mating sequences of the mutants appeared normal, except for one aspect of male courtship that had previously been shown to be experience dependent. In contrast, the effect on behavior patterns that do not involve learning--phototaxis, geotaxis, olfactory acuity, responsiveness to sucrose--was relatively slight under these conditions. Moderate Ddc mutations affected the acquisition of learned responses while leaving memory retention unaltered. This is in contrast to the mutations dunce , rutabaga , and amnesiac , which primarily affect short-term memory.

Full text

PDF
3577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byers D., Davis R. L., Kiger J. A., Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature. 1981 Jan 1;289(5793):79–81. doi: 10.1038/289079a0. [DOI] [PubMed] [Google Scholar]
  3. Daw N. W., Rader R. K., Robertson T. W., Ariel M. Effects of 6-hydroxydopamine on visual deprivation in the kitten striate cortex. J Neurosci. 1983 May;3(5):907–914. doi: 10.1523/JNEUROSCI.03-05-00907.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dewhurst S. A., Croker S. G., Ikeda K., McCaman R. E. Metabolism of biogenic amines in Drosophila nervous tissue. Comp Biochem Physiol B. 1972 Dec 15;43(4):975–981. doi: 10.1016/0305-0491(72)90241-6. [DOI] [PubMed] [Google Scholar]
  5. Dudai Y., Jan Y. N., Byers D., Quinn W. G., Benzer S. dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci U S A. 1976 May;73(5):1684–1688. doi: 10.1073/pnas.73.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dudai Y. Mutations affect storage and use of memory differentially in Drosophila. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5445–5448. doi: 10.1073/pnas.80.17.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duerr J. S., Quinn W. G. Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3646–3650. doi: 10.1073/pnas.79.11.3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall J. C., Alahiotis S. N., Strumpf D. A., White K. Behavioral and biochemical defects in temperature-sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics. 1980 Dec;96(4):939–965. doi: 10.1093/genetics/96.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
  10. Hotta Y., Benzer S. Abnormal electroretinograms in visual mutants of Drosophila. Nature. 1969 Apr 26;222(5191):354–356. doi: 10.1038/222354a0. [DOI] [PubMed] [Google Scholar]
  11. Jan L. Y., Jan Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol. 1976 Oct;262(1):189–214. doi: 10.1113/jphysiol.1976.sp011592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kandel E. R., Abrams T., Bernier L., Carew T. J., Hawkins R. D., Schwartz J. H. Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):821–830. doi: 10.1101/sqb.1983.048.01.085. [DOI] [PubMed] [Google Scholar]
  13. Kandel E. R., Brunelli M., Byrne J., Castellucci V. A common presynaptic locus for the synaptic changes underlying short-term habituation and sensitization of the gill-withdrawal reflex in Aplysia. Cold Spring Harb Symp Quant Biol. 1976;40:465–482. doi: 10.1101/sqb.1976.040.01.044. [DOI] [PubMed] [Google Scholar]
  14. Kasamatsu T., Pettigrew J. D. Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J Comp Neurol. 1979 May 1;185(1):139–161. doi: 10.1002/cne.901850109. [DOI] [PubMed] [Google Scholar]
  15. Kravitz E. A., Glusman S., Harris-Warrick R. M., Livingstone M. S., Schwarz T., Goy M. F. Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. J Exp Biol. 1980 Dec;89:159–175. doi: 10.1242/jeb.89.1.159. [DOI] [PubMed] [Google Scholar]
  16. Kuba K. Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J Physiol. 1970 Dec;211(3):551–570. doi: 10.1113/jphysiol.1970.sp009293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kupfermann I. Modulatory actions of neurotransmitters. Annu Rev Neurosci. 1979;2:447–465. doi: 10.1146/annurev.ne.02.030179.002311. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Livingstone M. S., Tempel B. L. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature. 1983 May 5;303(5912):67–70. doi: 10.1038/303067a0. [DOI] [PubMed] [Google Scholar]
  20. Marsh J. L., Wright T. R. Developmental relationship between dopa decarboxylase, dopamine acetyltransferase, and ecdysone in Drosophila. Dev Biol. 1980 Dec;80(2):379–387. doi: 10.1016/0012-1606(80)90412-1. [DOI] [PubMed] [Google Scholar]
  21. Quinn W. G., Harris W. A., Benzer S. Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1974 Mar;71(3):708–712. doi: 10.1073/pnas.71.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwartz J. H., Bernier L., Castellucci V. F., Palazzolo M., Saitoh T., Stapleton A., Kandel E. R. What molecular steps determine the time course of the memory for short-term sensitization in Aplysia? Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):811–819. doi: 10.1101/sqb.1983.048.01.084. [DOI] [PubMed] [Google Scholar]
  23. Siegel R. W., Hall J. C. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3430–3434. doi: 10.1073/pnas.76.7.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Squire L. R., Davis H. P. The pharmacology of memory: a neurobiological perspective. Annu Rev Pharmacol Toxicol. 1981;21:323–356. doi: 10.1146/annurev.pa.21.040181.001543. [DOI] [PubMed] [Google Scholar]
  25. Tempel B. L., Bonini N., Dawson D. R., Quinn W. G. Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1482–1486. doi: 10.1073/pnas.80.5.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tompkins L., Siegel R. W., Gailey D. A., Hall J. C. Conditioned courtship in Drosophila and its mediation by association of chemical cues. Behav Genet. 1983 Nov;13(6):565–578. doi: 10.1007/BF01076402. [DOI] [PubMed] [Google Scholar]
  27. Wise R. A. Catecholamine theories of reward: a critical review. Brain Res. 1978 Aug 25;152(2):215–247. doi: 10.1016/0006-8993(78)90253-6. [DOI] [PubMed] [Google Scholar]
  28. Wright T. R., Bewley G. C., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa-decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive mutants. Genetics. 1976 Oct;84(2):287–310. doi: 10.1093/genetics/84.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wright T. R., Hodgetts R. B., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics. 1976 Oct;84(2):267–285. doi: 10.1093/genetics/84.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES