Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2000 Sep;17(8):437–444. doi: 10.1023/A:1009465218688

Increased Progesterone Secretion and 3β-Hydroxysteroid Dehydrogenase Activity in Human Cumulus Cells by Pregnenolone Is Limited to the High Steroidogenic Active Cumuli

SHALOM BAR-AMI 1,2,3,4, HELA GITAY-GOREN 2
PMCID: PMC3455565  PMID: 11062854

Abstract

Purpose: Several reports imply that lower progesteronesecretion by cumulus-oocyte complexes (COCs) isassociated with lower fertilization in the corresponding oocyte.The possible role of progesterone in oocyte fertilization inhumans was studied using two approaches: (a) increasingthe total progesterone secretion by culturing more than oneCOC per dish; and (b) increasing the cumulus cell progesterone secretion by providing pregnenolone as a substrate.

Methods: Mature COCs were cultured individually orcocultured in groups. Oocyte fertilization and progesteronesecretion were tested after 20 hr and 3 days in culture, respectively.The cumuli from individually plated COCs were cultured inthe absence of oocyte for an additional 3 days in order totest the effects of pregnenolone on progesterone secretionand the 3β-hydroxysteroid dehydrogenase (3β-HSD)activity. A comparable study with pregnenolone was performedon the corresponding granulosa-lutein cells.

Results: Increasing the number of COC to two instead ofone led to a significant increase in both fertilization rateand progesterone secretion. The addition of pregnenoloneduring days 3–6 increased significantly both progesteronesecretion and 3β-HSD activity. Comparable results wereobserved in granulosa-lutein cells subjected to pregnenolonetreatment. Following the first 3 days culture, cumulus masseswere categorized as secreting high or low progesteronelevels. Adding pregnenolone had a greater effect on bothprogesterone secretion and 3β-HSD activity in thehigh-progesterone-secreting cumuli.

Conclusions: Addition of pregnenolone increased progesterone secretion and 3β-HSD more efficiently in thehigher-progesterone-secreting cumuli. Coculture of two COCsinstead of one led to a higher fertilization rate and greaterprogesterone secretion.

Keywords: Cumulus cells, 3β-hydroxysteroid dehydrogenase, in vitro fertilization, progesterone, pregnenolone

Full Text

The Full Text of this article is available as a PDF (125.1 KB).

REFERENCES

  • 1.Zlotkin T, Farkash Y, Orly J. Cell-specific expression of immunoreactive cholesterol side-chain cleavage cytochrome P-450 during follicular development in the rat ovary. Endocrinology. 1986;119:2809–2820. doi: 10.1210/endo-119-6-2809. [DOI] [PubMed] [Google Scholar]
  • 2.Pupkin M, Bratt H, Weisz J, Lloyd CW, Balogh K., Jr Dehydrogenases in the rat ovary. I. A histochemical study of Δ5-3β-and 20α-hydroxysteroid dehydrogenases and enzymes of carbohydrate oxidation during the estrous cycle. Endocrinology. 1966;79:316–327. doi: 10.1210/endo-79-2-316. [DOI] [PubMed] [Google Scholar]
  • 3.Goldschmit D, Kraicer P, Orly J. Periovulatory expression of cholesterol side-chain cleavage cytochrome P-450 in cumulus cells. Endocrinology. 1989;124:369–378. doi: 10.1210/endo-124-1-369. [DOI] [PubMed] [Google Scholar]
  • 4.Gore-Langton RE, Armstrong DT. Follicular steroidogenesis and its control. In: Knobil E, Neill JD, Greenwald GS, Markert CL, Pfaff DW, editors. The Physiology of Reproduction, vol 1. 2nd ed. New York: Raven Press; 1994. pp. 571–627. [Google Scholar]
  • 5.Bar-Ami S, Zlotkin E, Brandes JM, Itskovitz-Eldor J. Failure of meiotic competence in human oocytes. Biol Reprod. 1994;50:1100–1107. doi: 10.1095/biolreprod50.5.1100. [DOI] [PubMed] [Google Scholar]
  • 6.Wickings EJ, Hillier SG, Reichert LE., Jr Gonadotrophic control of steroidogenesis in human granulosa-lutein cells. J. Reprod Fertil. 1986;76:677–684. doi: 10.1530/jrf.0.0760677. [DOI] [PubMed] [Google Scholar]
  • 7.Bar-Ami S, Khoury C. Effect of cell-plating density on the steroidogenic activity of human cumulus cells. J Reprod Fertil. 1994;101:729–735. doi: 10.1530/jrf.0.1010729. [DOI] [PubMed] [Google Scholar]
  • 8.Gitay-Goren H, Brandes JM, Bar-Ami S. Altered steroidogenic pattern of human granulosa-lutein cells in relation to cumulus cell culture morphology. J Steroid Biochem. 1990;36:457–464. doi: 10.1016/0022-4731(90)90088-a. [DOI] [PubMed] [Google Scholar]
  • 9.Bar-Ami S, Khoury C, Zlotkin E, Brandes JM. Increasing progesterone secretion in human granulosa-lutein cells induced by human follicular fluid. Hum Reprod. 1993;8:46–53. doi: 10.1093/oxfordjournals.humrep.a137872. [DOI] [PubMed] [Google Scholar]
  • 10.Yovich JL, McColm SC, Yovich JM, Matson PL. Early luteal serum progesterone concentrations are higher in pregnancy cycles. Fertil Steril. 1985;44:185–189. doi: 10.1016/s0015-0282(16)48733-9. [DOI] [PubMed] [Google Scholar]
  • 11.Hill GA, Herbert CM, III, Wentz AC, Osteen KG. Use of individual human follicles to compare oocyte in vitro fertilization to granulosa cell in vitro luteinization. Fertil Steril. 1987;48:258–264. doi: 10.1016/s0015-0282(16)59353-4. [DOI] [PubMed] [Google Scholar]
  • 12.Bar-Ami S, Gitay-Goren H, Brandes JM. Different morphological and steroidogenic patterns in oocyte/cumulus-corona cell complexes aspirated at in vitro fertilization. Biol Reprod. 1989;41:761–770. doi: 10.1095/biolreprod41.4.761. [DOI] [PubMed] [Google Scholar]
  • 13.Bar-Ami S. Increasing progesterone secretion and 3β-hydroxysteroid dehydrogenase activity of human cumulus cells and granulosa-lutein cells concurrent with successful fertilization of the corresponding oocyte. J Steroid Biochem Mol Biol. 1994;51:299–305. doi: 10.1016/0960-0760(94)90043-4. [DOI] [PubMed] [Google Scholar]
  • 14.Parinaud J, Labal B, Vieitez G. High progesterone concentrations induce acrosome reaction with a low cytotoxic effect. Fertil Steril. 1992;58:599–602. doi: 10.1016/s0015-0282(16)55270-4. [DOI] [PubMed] [Google Scholar]
  • 15.Roldan ERS, Murase T, Shi Q-X. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994;266:1578–1581. doi: 10.1126/science.7985030. [DOI] [PubMed] [Google Scholar]
  • 16.Tyler JP, Smith DM, Biggers JD. Effect of steroids on oocyte maturation and atresia in mouse ovarian fragments in vitro. J Reprod Fertil. 1980;58:203–212. doi: 10.1530/jrf.0.0580203. [DOI] [PubMed] [Google Scholar]
  • 17.Barrett CB, Power RD. Progestins inhibit murine oocyte meiotic maturation in vitro. J Exp Zool. 1993;265:231–239. doi: 10.1002/jez.1402650305. [DOI] [PubMed] [Google Scholar]
  • 18.Tennant JR. Evaluation of the trypan blue technique for determination of cell viability. Transplantation. 1964;2:685–694. doi: 10.1097/00007890-196411000-00001. [DOI] [PubMed] [Google Scholar]
  • 19.Bar-Ami S, Regev A, Gitay-Goren H. Effect of androgen substrates on the steroidogenic pattern of cumulus cells: Correlation with cumulus culture morphology. J Assist Reprod Genet. 1997;14:270–276. doi: 10.1007/BF02765828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.De Vos A, Van de Velde H, Joris H, Van Steirteghem A. In-vitro matured metaphase-I oocytes have a lower fertilization rate but similar embryo quality as mature metaphase-II oocytes Dehydroafter intracytoplasmic sperm injection. Hum Reprod. 1999;14:1859–1863. doi: 10.1093/humrep/14.7.1859. [DOI] [PubMed] [Google Scholar]
  • 21.Beckers NG, Pieters MH, Ramos L, Zeilmaker GH, Fauser BC, Braat DD. Retrieval, maturation, and fertilization of immature oocytes obtained from unstimulated patients with polycystic ovary syndrome. Assist Reprod Genet. 1999;16:81–86. doi: 10.1023/A:1022516806423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Cecconi S, D'Aurizio R, Colonna R. Role of antral follicle development and cumulus cells on in vitro fertilization of mouse oocytes. J Reprod Fertil. 1996;107:207–214. doi: 10.1530/jrf.0.1070207. [DOI] [PubMed] [Google Scholar]
  • 23.Ka HH, Sawai K, Wang WH, Im KS, Niwa K. Amino acids in maturation medium and presence of cumulus cells at fertilization promote male pronuclear formation in porcine oocytes matured and penetrated in vitro. Biol Reprod. 1997;57:1478–1483. doi: 10.1095/biolreprod57.6.1478. [DOI] [PubMed] [Google Scholar]
  • 24.Illera MJ, Lorenzo PL, Illera JC, Petters RM. Developmental competence of immature pig oocytes under the influence of EGF, IGF-I, follicular fluid and gonadotropins during IVM-IVF processes. Int J Dev Biol. 1998;42:1169–1172. [PubMed] [Google Scholar]
  • 25.Silva CC, Knight PG. Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes. Biol Reprod. 1998;58:558–565. doi: 10.1095/biolreprod58.2.558. [DOI] [PubMed] [Google Scholar]
  • 26.Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–1048. doi: 10.1210/mend.13.6.0310. [DOI] [PubMed] [Google Scholar]
  • 27.Meizel S. Amino acid neurotransmitter receptor/chloride channels of mammalian sperm and the acrosome reaction. Biol Reprod. 1997;56:569–574. doi: 10.1095/biolreprod56.3.569. [DOI] [PubMed] [Google Scholar]
  • 28.Meizel S, Turner K. N. R. : Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction. Dev Biol. 1997;182:67–65. doi: 10.1006/dbio.1997.8477. [DOI] [PubMed] [Google Scholar]
  • 29.Paltieli Y, Weichselbaum A, Eibschitz I, Ziskind G, Silbermann M. The effects of estrogen and progesterone on the ciliary activity in the human fallopian tubes. J Assist Reprod Genet (Suppl) 1995;12:112S. [Google Scholar]
  • 30.Bar-Ami S, Gitay-Goren H. Altered steroidogenic activity of human granulosa-lutein cells at different cell densities in culture. Mol Cell Endocrinol. 1993;90:157–164. doi: 10.1016/0303-7207(93)90147-c. [DOI] [PubMed] [Google Scholar]
  • 31.Khoury C, Itskovitz-Eldor J, Bar-Ami S. Induction of maturation of cumulus-oocyte complex by gonadotropin-releasing hormone analog is associated with lower progesterone secretion. J Clin Endocrinol Metab. 1994;79:1001–1006. doi: 10.1210/jcem.79.4.7962266. [DOI] [PubMed] [Google Scholar]
  • 32.Doody KJ, Lorence MC, Mason JI, Simpson ER. Expression of messenger ribonucleic acid species encoding steroidogenic enzymes in human follicles and corpora lutea throughout the menstrual cycle. J Clin Endocrinol Metab. 1990;70:1041–1045. doi: 10.1210/jcem-70-4-1041. [DOI] [PubMed] [Google Scholar]
  • 33.Tanaka N, Iwamasa J, Matsuura K, Okamura H. Effects of progesterone and antiprogesterone RU486 on ovarian 3β-hydroxysteroid dehydrogenase activity during ovulation in the gonodotrophin-primed immature rat. J Reprod Fertil. 1993;97:167–172. doi: 10.1530/jrf.0.0970167. [DOI] [PubMed] [Google Scholar]
  • 34.Chaffkin LM, Luciano AA, Peluso JJ. Progesterone as an autocrine/paracrine regulator of human granulosa cell proliferation. J Clin Endocrinol Metab. 1992;75:1404–1408. doi: 10.1210/jcem.75.6.1464640. [DOI] [PubMed] [Google Scholar]
  • 35.Duffy DM, Hess DL, Stouffer RL. Acute administration of a 3β-hydroxysteroid dehydrogenase inhibitor to rhesus monkeys at the midluteal phase of the menstrual cycle: Evidence for possible autocrine regulation of the primate corpus luteum by progesterone. J Clin Endocrinol Metab. 1994;79:1587–1594. doi: 10.1210/jcem.79.6.7989460. [DOI] [PubMed] [Google Scholar]
  • 36.Ben-Rafael Z, Kopf GS, Blasco L, Tureck RW, Mastroianni L., Jr Fertilization and cleavage after reinsemination of human oocytes in vitro. Fertil Steril. 1986;45:58–62. doi: 10.1016/s0015-0282(16)49097-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES