Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4246–4249. doi: 10.1073/pnas.81.14.4246

Use of riboflavin-binding protein to investigate steric and electronic relationships in flavin analogs and models.

A Wessiak, L M Schopfer, L C Yuan, T C Bruice, V Massey
PMCID: PMC345564  PMID: 6589590

Abstract

We have examined the affinity of two recently synthesized flavin analogs for the isoalloxazine binding site of riboflavin-binding protein (RBP). The results showed that pyrimidopteridines could bind to RBP (Kd 160-250 microM). This suggested that, at the FMN or FAD level, these analogs might also bind to other apoflavoproteins, thereby providing a high potential probe for flavin enzymology. In contrast, 4a,5-ring-opened isoalloxazines did not bind to RBP. However, 1,10a-ring-opened flavins bind with considerable avidity (Kd about 40 nM). Evidence is presented which indicates that the 4a,5-ring-opened species adopted a nonplanar configuration which, in turn, was responsible for the lack of affinity to RBP. Steric and electronic consequences of a 4a,5 ring opening are discussed in relation to flavin-dependent phenolic hydroxylases.

Full text

PDF
4246

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becvar J., Palmer G. The binding of flavin derivatives to the riboflavin-binding protein of egg white. A kinetic and thermodynamic study. J Biol Chem. 1982 May 25;257(10):5607–5617. [PubMed] [Google Scholar]
  2. Brand L., Gohlke J. R. Fluorescence probes for structure. Annu Rev Biochem. 1972;41:843–868. doi: 10.1146/annurev.bi.41.070172.004211. [DOI] [PubMed] [Google Scholar]
  3. Choi J. D., McCormick D. B. The interaction of flavins with egg white riboflavin-binding protein. Arch Biochem Biophys. 1980 Oct 1;204(1):41–51. doi: 10.1016/0003-9861(80)90005-3. [DOI] [PubMed] [Google Scholar]
  4. Dudley K. H., Hemmerich P. Flavins. 13. Rearrangement reactions of 1,3,10-trialkylflavinium salts. J Org Chem. 1967 Oct;32(10):3049–3054. doi: 10.1021/jo01285a025. [DOI] [PubMed] [Google Scholar]
  5. Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
  6. Fisher J., Ramakrishnan K., McLane K. E. Complexation of anthracycline antibiotics by the apo egg white riboflavin binding protein. Biochemistry. 1982 Nov 23;21(24):6172–6180. doi: 10.1021/bi00267a023. [DOI] [PubMed] [Google Scholar]
  7. Kitagawa T., Nishina Y., Kyogoku Y., Yamano T., Ohishi N., Takai-Suzuki A., Yagi K. Resonance Raman spectra of carbon-13- and nitrogen-15-labeled riboflavin bound to egg-white flavoprotein. Biochemistry. 1979 May 1;18(9):1804–1808. doi: 10.1021/bi00576a026. [DOI] [PubMed] [Google Scholar]
  8. Klapper M. H., Faraggi M. One-electron reduction of flavoproteins: pulse radiolysis of chicken egg white riboflavin binding protein. Biochemistry. 1983 Aug 16;22(17):4067–4071. doi: 10.1021/bi00286a012. [DOI] [PubMed] [Google Scholar]
  9. Matsui K., Sugimoto K., Kasai S. Thermodynamics of association of 8-substituted riboflavins with egg white riboflavin binding protein. J Biochem. 1982 Feb;91(2):469–475. doi: 10.1093/oxfordjournals.jbchem.a133719. [DOI] [PubMed] [Google Scholar]
  10. Matsui K., Sugimoto K., Kasai S. Thermodynamics of association of egg yolk riboflavin binding protein with 8-substituted riboflavins. Comparison with the egg white protein. J Biochem. 1982 Apr;91(4):1357–1362. doi: 10.1093/oxfordjournals.jbchem.a133823. [DOI] [PubMed] [Google Scholar]
  11. McClure W. O., Edelman G. M. Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry. 1966 Jun;5(6):1908–1919. doi: 10.1021/bi00870a018. [DOI] [PubMed] [Google Scholar]
  12. Merrill A. H., Jr, Lambeth J. D., Edmondson D. E., McCormick D. B. Formation and mode of action of flavoproteins. Annu Rev Nutr. 1981;1:281–317. doi: 10.1146/annurev.nu.01.070181.001433. [DOI] [PubMed] [Google Scholar]
  13. Miura R., Kasai S., Horiike K., Sugimoto K., Matsui K., Yamano T., Miyake Y. 8-Fluoro-8-demethylriboflavin as a 19F-probe for flavin-protein interaction. A 19F NMR study with egg white riboflavin binding protein. Biochem Biophys Res Commun. 1983 Jan 27;110(2):406–411. doi: 10.1016/0006-291x(83)91163-4. [DOI] [PubMed] [Google Scholar]
  14. Moore E. G., Cardemil E., Massey V. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD. J Biol Chem. 1978 Sep 25;253(18):6413–6422. [PubMed] [Google Scholar]
  15. Moore E. G., Ghisla S., Massey V. Properties of flavins where the 8-methyl group is replaced by mercapto- residues. J Biol Chem. 1979 Sep 10;254(17):8173–8178. [PubMed] [Google Scholar]
  16. Schopfer L. M., Morris M. D. Resonance Raman spectra of flavin derivatives containing chemical modifications in positions 7 and 8 of the isoalloxazine ring. Biochemistry. 1980 Oct 14;19(21):4932–4935. doi: 10.1021/bi00562a036. [DOI] [PubMed] [Google Scholar]
  17. Spencer R., Fisher J., Walsh C. Preparation, characterization, and chemical properties of the flavin coenzyme analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphate, and 5-deazariboflavin 5'-diphosphate, 5'leads to5'-adenosine ester. Biochemistry. 1976 Mar 9;15(5):1043–1053. doi: 10.1021/bi00650a015. [DOI] [PubMed] [Google Scholar]
  18. Tu S., Hastings J. W. Differential effects of 8-anilino-1-naphthalenesulfonate upon binding of oxidized and reduced flavines by bacterial luciferase. Biochemistry. 1975 Sep 23;14(19):4310–4316. doi: 10.1021/bi00690a027. [DOI] [PubMed] [Google Scholar]
  19. Walsh C., Fisher J., Spencer R., Graham D. W., Ashton W. T., Brown J. E., Brown R. D., Rogers E. F. Chemical and enzymatic properties of riboflavin analogues. Biochemistry. 1978 May 16;17(10):1942–1951. doi: 10.1021/bi00603a022. [DOI] [PubMed] [Google Scholar]
  20. Wessiak A., Noar J. B., Bruice T. C. The possibility that the spectrum of intermediate two, seen in the course of reaction of flavoenzyme phenol hydroxylases, may be attributable to iminol isomers of a flavin-derived 6-arylamino-5-oxo(3H,5H)uracil. Proc Natl Acad Sci U S A. 1984 Jan;81(2):332–336. doi: 10.1073/pnas.81.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES