Abstract
A polypeptide-dependent protein kinase was purified about 80-fold from an extract of plasma membranes of Ehrlich ascites tumor cells. The membranes were extracted with Nonidet P-40, and the extract was purified by ammonium sulfate fractionation and hydroxylapatite and affinity chromatography. The activity was stimulated 10-fold or more by polypeptide preparations from a variety of tissues, including placenta and hypothalamus. Polypeptide-dependent protein kinase had a pH optimum of about 7.5 and required Mg2+ for activity. Mn2+ at low concentrations (200 microM) stimulated enzyme activity somewhat but inhibited activity strongly at higher concentrations. The best available substrate for polypeptide-dependent protein kinase was beta-casein, and little or no phosphorylation was observed with alpha-casein, kappa-casein, phosvitin, alpha-lactalbumin, alpha-lactoglobulin, and histone. However, several endogenous substrates from plasma membranes of Ehrlich ascites tumor cells were phosphorylated. Polypeptide-dependent protein kinase activity was not inhibited by 10 mM N-ethylmaleimide, and this resistance was useful in differentiating this protein kinase from other protein kinases that were present in crude fractions and sensitive to the inhibitor.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Ghany M., Nakamura S., Navarro J., Racker E. A membrane-bound human placental protein kinase activated by endogenous polypeptides. Biosci Rep. 1983 Mar;3(3):275–282. doi: 10.1007/BF01122460. [DOI] [PubMed] [Google Scholar]
- Banerjee R., Epstein M., Kandrach M., Zimniak P., Racker E. A new method of preparing Ca2+-ATPase from sarcoplasmic reticulum: extraction with octylglucoside. Membr Biochem. 1979;2(3-4):283–296. doi: 10.3109/09687687909063868. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carpenter G., Poliner L., King L., Jr Protein phosphorylation in human placenta. Stimulation by epidermal growth factor. Mol Cell Endocrinol. 1980 Jun;18(3):189–199. doi: 10.1016/0303-7207(80)90065-9. [DOI] [PubMed] [Google Scholar]
- Huganir R. L., Racker E. Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica. J Biol Chem. 1982 Aug 25;257(16):9372–9378. [PubMed] [Google Scholar]
- Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen P. L. Isolation of (Na+ plus K+)-ATPase. Methods Enzymol. 1974;32:277–290. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lever J. E. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport. J Biol Chem. 1982 Aug 10;257(15):8680–8686. [PubMed] [Google Scholar]
- Racker E. Oncogenes, transforming growth factors, and protein transport: a hypothesis. Biosci Rep. 1983 Jun;3(6):507–516. doi: 10.1007/BF01120694. [DOI] [PubMed] [Google Scholar]
- Racker E. Resolution and reconstitution of biological pathways from 1919 to 1984. Fed Proc. 1983 Sep;42(12):2899–2909. [PubMed] [Google Scholar]
- Thom D., Powell A. J., Lloyd C. W., Rees D. A. Rapid isolation of plasma membranes in high yield from cultured fibroblasts. Biochem J. 1977 Nov 15;168(2):187–194. doi: 10.1042/bj1680187. [DOI] [PMC free article] [PubMed] [Google Scholar]


