Abstract
The rate of oxidative phosphorylation was investigated in isolated mitochondria from hindlimb muscles of young (4.5 mo) and old (26.5 mo) male Fischer 344 rats with or without endurance training. Further, the susceptibility of the muscle mitochondria to exogenous reactive oxygen species was examined. State 3 and 4 respiration, as well as the respiratory control index (RCI), were significantly lower in muscle mitochondria from aged vs. young rats (P<0.05), using either the site 1 substrates malate-pyruvate (M-P) and 2-oxoglutarate (2-OG), or the site 2 substrate succinate. In both young and old rats, training increased state 4 respiration with M-P, but had no effect on state 3 respiration, resulting in a reduction of RCI. Training also increased state 4 respiration with 2-OG and decreased RCI in young rats. When muscle mitochondria were exposed to superoxide radicals (O2·−) and hydrogen peroxide (H2O2) generated by xanthine oxidase and hypoxanthine, or H2O2 alone in vitro, state 3 respiration and RCI in both age groups were severely hampered, but those from the old rats were inhibited to a less extent than the young rats. In contrast, state 4 respiration was impaired by O2·− and/or H2O2 to a greater extent in the old rats. Muscle mitochondria from trained young rats showed a greater resistance to the O2· − and/or H2O2-induced state 3 and RCI inhibition than those from untrained young rats. Muscle from aged rats had significantly higher total activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), and glutathione reductase than that from young rats, however, training increased SOD and GPX activities in young but not old rats. The results of this study suggest that mitochondrial capacity for oxidative phosphorylation is compromised in aging skeletal muscle. Further, the increased mitochondrial resistance to reactive oxygen species demonstrated in aged and young trained muscles may be attributed to enhanced antioxidant enzyme activities.
Key words: Aging, antioxidant enzyme, mitochondria, oxidative phosphorylation, reactive oxygen species, skeletal muscle, training
Full Text
The Full Text of this article is available as a PDF (820.0 KB).
References
- 1.Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. A Biol. Sci. Med. Sci. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
- 2.Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979;59:527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- 3.Miquel J., Fleming J. Theoretical and experimental support for an oxygen radical mitochondrial injury hypothesis of cell aging. In: Johnson J., Walford R., Harman D., Miquel J., editors. Biology of Aging. New York: Alan R. Liss, Inc.; 1986. p. 51. [Google Scholar]
- 4.Hansford R.G. Bioenergetics in aging. Biochim. Biophys. Acta. 1983;726:41–80. doi: 10.1016/0304-4173(83)90010-1. [DOI] [PubMed] [Google Scholar]
- 5.Nohl H. Oxygen free radical release in mitochondria: influence of aging. In: Johnson J., Walford R., Harman D., Miquel J., editors. Biology of Aging. New York: Alan R. Liss, Inc.; 1986. p. 77. [Google Scholar]
- 6.Sohal R.S., Sohal B.H. Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 1991;57:187–202. doi: 10.1016/0047-6374(91)90034-W. [DOI] [PubMed] [Google Scholar]
- 7.Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Brieley E. J., Johnson M.A., James O.F., Turnbull D.M. Mitochondrial involvement in the aging process. Facts and controversies. Mol. Cell Biochem. 1997;174:325–328. doi: 10.1023/A:1006847319162. [DOI] [PubMed] [Google Scholar]
- 9.Forman H.J., Azzi A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 1997;11:374–375. doi: 10.1096/fasebj.11.5.9141504. [DOI] [PubMed] [Google Scholar]
- 10.Sawada M., Sester U., Carlson J.C. Superoxide radical formation and associated biochemical alterations in the plasma membrane of brain, heart, and liver during the lifetime of the rat. J. Cell Biochem. 1992;48:296–304. doi: 10.1002/jcb.240480310. [DOI] [PubMed] [Google Scholar]
- 11.Yu B.P., Yang R. Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann. N. Y. Acad. Sci. 1996;786:1–11. doi: 10.1111/j.1749-6632.1996.tb39047.x. [DOI] [PubMed] [Google Scholar]
- 12.Barja G., Cadenas S., Rojas C., Perez-Campo R., Lopez-Torres M. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Rad. Res. 1994;21:317–328. doi: 10.3109/10715769409056584. [DOI] [PubMed] [Google Scholar]
- 13.Zhan H., Sun C.P., Liu C.G., Zhou J.H. Age-related change of free radical generation in liver and sex glands of rats. Mech. Ageing Dev. 1992;62:111–116. doi: 10.1016/0047-6374(92)90047-H. [DOI] [PubMed] [Google Scholar]
- 14.Trounce I., Byrne E., Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1989;8639:637–639. doi: 10.1016/S0140-6736(89)92143-0. [DOI] [PubMed] [Google Scholar]
- 15.Cooper J.M., Mann V.M., Schaira A.H.V. Analyses of mitochondria respiratory chain function and mitochondria DNA deletion in human skeletal muscle: effect of aging. J. Neurol. Sci. 1992;113:91–98. doi: 10.1016/0022-510X(92)90270-U. [DOI] [PubMed] [Google Scholar]
- 16.Davies K., Packer L., Brooks G.A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch. Biochem. Biophys. 1981;209:539–554. doi: 10.1016/0003-9861(81)90312-X. [DOI] [PubMed] [Google Scholar]
- 17.Ji L.L. Exercise and oxidative stress: role of the cellular antioxidant systems. In: Holloszy J.O., editor. Exercise Sport Sciences Reviews. Baltimore: Williams & Wilkins; 1995. pp. 135–166. [PubMed] [Google Scholar]
- 18.Meydani M., Evans W. J. Free radicals, exercise, and aging. In: Yu B.P., editor. Free Radicals in Aging. Boca Raton: CRC Press; 1993. pp. 183–204. [Google Scholar]
- 19.Leeuwenburgh C., Fiebig R., Chandwaney R., Ji L.L. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am. J. Physiol. 1994;267:R439–445. doi: 10.1152/ajpregu.1994.267.2.R439. [DOI] [PubMed] [Google Scholar]
- 20.Farrar R.P., Mayer L.R., Starnes J.W., Edington D.W. Selected biochemical parameters of two sizes of rat skeletal and heart muscle mitochondria at selected intervals of a 16-week endurance training program. Eur. J. Appl. Physiol. 1981;46:91–102. doi: 10.1007/BF00422181. [DOI] [PubMed] [Google Scholar]
- 21.Rogers M.A., Evans W. J. Changes in skeletal muscle with aging: effects of exercise training. In: Hollozy J., editor. Exercise & Sport Science Reviews. Baltimore: Williams & Wilkins; 1993. pp. 65–102. [PubMed] [Google Scholar]
- 22.Brooks G., White T.P. Determination of metabolic and heart rate responses of rats to treadmill exercise. J. Appl. Physiol. 1978;45:1009–1015. doi: 10.1152/jappl.1978.45.6.1009. [DOI] [PubMed] [Google Scholar]
- 23.Lawler J.M., Powers S.K., Mammeren J., Martin A.D. Oxygen cost of treadmill running in 24-month-old Fischer-344 rats. Med. Sci. Sports Exer. 1993;25:1259–1264. [PubMed] [Google Scholar]
- 24.Ji L.L., Mitchell E.W. Effect of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem. Pharmacol. 1994;47:877–885. doi: 10.1016/0006-2952(94)90488-X. [DOI] [PubMed] [Google Scholar]
- 25.Bobyleva-Guarriero V., Lardy H. The effect of the role of malate in exercise induced enhancement of mitochondrial respiration. Arch. Biochem. Biophys. 1986;245:470–476. doi: 10.1016/0003-9861(86)90239-0. [DOI] [PubMed] [Google Scholar]
- 26.Chance B., Williams G.R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- 27.Ji L.L., Dillon D., Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol. 1990;258:R918–923. doi: 10.1152/ajpregu.1990.258.4.R918. [DOI] [PubMed] [Google Scholar]
- 28.Misra H.P., Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. [PubMed] [Google Scholar]
- 29.Flohe L., Gunzler W. Glutathione peroxidase. Methods Enzymol. 1984;105:115–12. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
- 30.Carlberg I., Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–499. doi: 10.1016/S0076-6879(85)13062-4. [DOI] [PubMed] [Google Scholar]
- 31.Aebi H. Catalase. Meth. Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- 32.LaCagnin L.B., Bowman L., Ma J.Y.C., Miles P.R. Metobolic changes in alveolar type II cells after exposure to hydrogen peroxide. Am. J. Physiol. 1990;259:L57–L65. doi: 10.1152/ajplung.1990.259.2.L57. [DOI] [PubMed] [Google Scholar]
- 33.Darnold J.R., Vorbeck M.L., Martin A.P. Effect of aging on the oxidative phosphorylation pathway. Mech. Ageing Dev. 1990;53:157–167. doi: 10.1016/0047-6374(90)90067-P. [DOI] [PubMed] [Google Scholar]
- 34.Nohl H. Age-dependent changes in the structure-function correlation of ADP/ATP-translocating mitochondrial membrane. Gerontol. 1982;28:354–359. doi: 10.1159/000212556. [DOI] [PubMed] [Google Scholar]
- 35.Nohl H., Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotides translocase. Mech. Ageing Dev. 1980;14:137–144. doi: 10.1016/0047-6374(80)90112-8. [DOI] [PubMed] [Google Scholar]
- 36.Chen J.J., Yu B.P. Alterations in mitochonndrial membrane fluidity by lipid peroxidation products. Free Rad. Biol. Med. 1994;17:411–418. doi: 10.1016/0891-5849(94)90167-8. [DOI] [PubMed] [Google Scholar]
- 37.Matsuo M. Age-related alterations in antioxidant defense. In: Yu B.P., editor. Free Radicals in Aging. Boca Raton: CRC Press; 1993. p. 143. [Google Scholar]
- 38.Ji L.L. Antioxidant enzyme response to exercise and aging. Med. Sci. Sports Exerc. 1993;25:225–231. [PubMed] [Google Scholar]
- 39.Luhtala T., Roecher E.B., Pugh T., Feuers R. J., Weindruch R. Dietary restriction opposes age-related increases in rat skeletal muscle antioxidant enzyme activities. J. Gerontol. A Biol. Sci. Med. Sci. 1994;49:B231–B238. doi: 10.1093/geronj/49.5.b231. [DOI] [PubMed] [Google Scholar]
- 40.Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem. J. 1973;134:707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Davies K.J.A., Quintanilha T.A., Brooks G.A., Packer L. Free radical and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982;107:1198–1205. doi: 10.1016/S0006-291X(82)80124-1. [DOI] [PubMed] [Google Scholar]
- 42.Higuchi M., Cartier L. J., Chen M., Holloszy J.O. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J. Gerontol. 1985;40:281–286. doi: 10.1159/000124087. [DOI] [PubMed] [Google Scholar]
- 43.Leeuwenburgh C., Hollander J., Leichtweis S., Griffiths M., Gore M., Ji L.L. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am. J. Physiol. 1997;272:R363–369. doi: 10.1152/ajpregu.1997.272.1.R363. [DOI] [PubMed] [Google Scholar]
- 44.Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J.A. The oxidative inactivation of mitochondrial electron transport chain components and AT-Pase. J. Biol. Chem. 1990;265:16330–16336. [PubMed] [Google Scholar]
- 45.Herrero A., Barja G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech. Ageing Dev. 1997;98:95–111. doi: 10.1016/S0047-6374(97)00076-6. [DOI] [PubMed] [Google Scholar]