Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 1999 Feb;16(2):102–107. doi: 10.1023/A:1022525108241

Low Oxygen Inhibits but Complex High-Glucose Medium Facilitates In Vitro Maturation of Squirrel Monkey Oocyte–Granulosa Cell Complexes

R R Yeoman 1,, L E Williams 2, C R Abee 2
PMCID: PMC3455734  PMID: 10079414

Abstract

Purpose:The objectives of these in vitro maturation studies in primate cumulus-oocyte complexes (COCs) were to evaluate the effect of a reduced-oxygen environment and to compare medium with a high-glucose concentration to medium with pyruvate but no glucose.

Methods:COCs were retrieved from squirrel monkeys stimulated with 1 mg of follicle-stimulating hormone (FSH) for 4–6 days. Experiment 1 examined maturation after 48 hr in 5% O2/5% CO2/90% N2compared with 5% CO2/air. The medium was CMRL-1066 containing moderate glucose (5.5 mM) supplemented with 1 mM glutamine, 0.33 mM pyruvate, 0.075 IU/ml human FSH, 5 IU/ml human chorionic gonadotropin, 75 U penicillin G/ml, and 20% fetal bovine serum. Experiment 2 in 5% CO2/air, compared P-l medium (pyruvate and lactate but no glucose) to Waymouth's medium (27.5 mM glucose), both with identical supplements.

Results:Only 3 (8%) of 37 COCs matured in 5% O2, while 39 (49%) of 80 matured in ambient O2. Fourteen (22%) of 64 complexes matured in P-1 medium, compared to 47 (49%) of 96 meiosis II oocytes in Waymouth's medium (P < 0.05).

Conclusions:These are the first primate studies showing detrimental effects of reduced-oxygen culture on in vitro maturation. Additionally, maturation was enhanced with complex high-glucose medium suggesting that the predominant metabolism is aerobic glycolysis.

Keywords: glucose, maturation, oocyte, oxygen, primate

Full Text

The Full Text of this article is available as a PDF (809.2 KB).

REFERENCES

  • 1.Eppig JJ. Factors controlling mammalian oocyte maturation. In: Stouffer RL, editor. The Primate Ovary. New York: Plenum; 1987. pp. 77–90. [Google Scholar]
  • 2.Alberts B, Dray D, Lewis J, Raff M, Roberts K, Watson JD. The Molecular Biology of the Cell. New York: Garland; 1994. [Google Scholar]
  • 3.Sorensen RA, Wassarman PM. Relationship between growth and meiotic maturation of the mouse oocyte. Dev Biol. 1976;50:531–536. doi: 10.1016/0012-1606(76)90172-x. [DOI] [PubMed] [Google Scholar]
  • 4.Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated form early antral follicles. J Reprod Fertil. 1984;72:323–328. doi: 10.1530/jrf.0.0720323. [DOI] [PubMed] [Google Scholar]
  • 5.Schramm RD, Tennier MT, Boatman DE, Bavister BD. Chromatin configurations and meiotic competence of oocytes are related ot follicular diameter in ninstimulated rhesus monkeys. Biol Reprod. 1993;48:346–356. doi: 10.1095/biolreprod48.2.349. [DOI] [PubMed] [Google Scholar]
  • 6.Gilchrist RB, Nayudu PL, Nowshari MA, Hodges JK. Meiotic competence of marmoset monkey oocytes is related to follicle size and oocyte-somatic cell associations. Biol Reprod. 1995;52:1234–1243. doi: 10.1095/biolreprod52.6.1234. [DOI] [PubMed] [Google Scholar]
  • 7.Fulka J, Motlik J, Fulka J, Jilek F. Effect of cyclohexamide on nuclear maturation of pig and mouse oocytes. J Reprod Fertil. 1986;77:281–285. doi: 10.1530/jrf.0.0770281. [DOI] [PubMed] [Google Scholar]
  • 8.Bar-Ami S, Seibel MM. Oocyte development and meiosis in humans. In: Seibel MM, editor. Infertility. Stamford CT: Appleton and Lange; 1997. pp. 61–110. [Google Scholar]
  • 9.Dekel N, Galiani D, Sherizly I. Dissociation between the inhibitory and the stimulatory action of cAMP on maturation of rat oocytes. Mol Cell Endocrinol. 1988;56:115–121. doi: 10.1016/0303-7207(88)90015-9. [DOI] [PubMed] [Google Scholar]
  • 10.Mattioli M, Galeati G, Bacci ML, Barboni B. Changes in maturation promoting activity in the cytoplasm of pig oocytes throughout maturation. Mol Reprod Dev. 1991;30:119–123. doi: 10.1002/mrd.1080300208. [DOI] [PubMed] [Google Scholar]
  • 11.Long CR, Damiani P, Pinto-Correia C, MacLean RA, Duby RT, Robl JM. Morphology and subsequent development in culture of bovine oocytes matured in vitro under various conditions of fertilization. J Reprod Fertil. 1994;102:361–369. doi: 10.1530/jrf.0.1020361. [DOI] [PubMed] [Google Scholar]
  • 12.Biggers JD. Metabolism of the Oocyte. In: Biggers JD, Schultz AW, editors. Oogenesis. Baltimore: University Park Press; 1972. pp. 241–251. [Google Scholar]
  • 13.Bornslaeger EA, Schultz RM. Regulation of mouse oocyte maturation: Effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol Reprod. 1985;33:698–704. doi: 10.1095/biolreprod33.3.698. [DOI] [PubMed] [Google Scholar]
  • 14.Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71:680–686. doi: 10.1083/jcb.71.2.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Schramm RD, Bavister BD. Follicle-stimulating hormone priming of rhesus monkeys enhances meiotic and developmental competence of oocytes matured in vitro. Biol Reprod. 1994;51:904–912. doi: 10.1095/biolreprod51.5.904. [DOI] [PubMed] [Google Scholar]
  • 16.Yeoman RR, Helvacioglu A, Williams LE, Aksel S, Abee CR. Restoration of oocyte maturational competency during the nonbreeding season with follicle-stimulating hormone stimulation in squirrel monkeys (Saimiri boliviensis boliviensis) Biol Reprod. 1994;50:329–335. doi: 10.1095/biolreprod50.2.329. [DOI] [PubMed] [Google Scholar]
  • 17.Alak BM, Wolf DP. Rhesus monkey oocyte maturation and fertilization in vitro: Roles of the menstrual cycle phase and of exogenous gonadotropins. Biol Reprod. 1994;51:879–887. doi: 10.1095/biolreprod51.5.879. [DOI] [PubMed] [Google Scholar]
  • 18.Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46:551–566. doi: 10.1002/(SICI)1098-2795(199704)46:4<551::AID-MRD13>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 19.Scott L, Whittingham DG. Influence of genetic background and media components on the development of mouse embryos in vitro. Mol Reprod Dev. 1996;43:336–346. doi: 10.1002/(SICI)1098-2795(199603)43:3<336::AID-MRD8>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  • 20.Eppig JJ, Wigglesworth K. Factors affecting the developmental competence of mouse oocytes grown in vitro: Oxygen concentration. Mol Reprod Dev. 1995;42:447–456. doi: 10.1002/mrd.1080420412. [DOI] [PubMed] [Google Scholar]
  • 21.Liu Z, Foote RH. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent oxygen. Biol Reprod. 1995;53:786–790. doi: 10.1095/biolreprod53.4.786. [DOI] [PubMed] [Google Scholar]
  • 22.Downs SM, Houghton FD, Humpherson PG, Leese HJ. Substrate utilization and maturation of cumulus cell-enclosed mouse oocytes: Evidence that pyruvate oxidation does not mediate meiotic induction. J Reprod Fertil. 1997;110:1–10. doi: 10.1530/jrf.0.1100001. [DOI] [PubMed] [Google Scholar]
  • 23.Gardner DK, Leese HJ. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil. 1990;88:361–368. doi: 10.1530/jrf.0.0880361. [DOI] [PubMed] [Google Scholar]
  • 24.Gosden RG, Byatt-Smith JG. Oxygen concentration gradient across the ovarian follicular epithelium: model, predictions and implications. Hum Reprod. 1986;1:65–68. doi: 10.1093/oxfordjournals.humrep.a136362. [DOI] [PubMed] [Google Scholar]
  • 25.Knudsen JF, Litkowshi LJ, Wilson TL, Guthrie HD, Batta SK. Concentrations of hydrogen ions, oxygen, carbon dioxide and bicarbonate in porcine follicular fluid. J Endocrinol. 1978;79:249–250. doi: 10.1677/joe.0.0790249. [DOI] [PubMed] [Google Scholar]
  • 26.Zeilmaker GH, Jlsmann WC, Wensinck F, Verhamme C. Oxygen triggered oocyte maturation in vitro and lactate utilization by mouse oocytes and zygotes. J Reprod Fertil. 1972;9:151–152. doi: 10.1530/jrf.0.0290151. [DOI] [PubMed] [Google Scholar]
  • 27.Fisher B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–679. doi: 10.1530/jrf.0.0990673. [DOI] [PubMed] [Google Scholar]
  • 28.Barbehenn EK, Wales RG, Lowry OH. The explanation for the blockade of glycolysis in early mouse embryos. Proc Natl Acad Sci USA. 1974;71:1056–1060. doi: 10.1073/pnas.71.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gwatkin RBL, Haidri AA. Oxygen requirements for the maturation of hamster oocytes. J Reprod Fertil. 1974;37:127–129. doi: 10.1530/jrf.0.0370127. [DOI] [PubMed] [Google Scholar]
  • 30.Smitz J, Cortvrindt R, Van Steirteghem AC. Normal oxygen atmosphere is essential for the solitary long-term culture of early preantral mouse follicles. Mol Reprod Dev. 1996;45:466–475. doi: 10.1002/(SICI)1098-2795(199612)45:4<466::AID-MRD9>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 31.Volarcik K, Sheean L, Goldfarb J, Woods L, Abdul-karim FW, Hunt P. The meiotic competence of in-vitro matured human oocytes is influenced by donor age: evidence that folliculogensis is compromised in the reproductively aged ovary. Hum Reprod. 1998;13:154–160. doi: 10.1093/humrep/13.1.154. [DOI] [PubMed] [Google Scholar]
  • 32.Abeydeera LR, Wang W, Prather RS, Day BN. Maturation in vitro of pig oocytes in protein-free culture media: Fertilization and subsequent embryo development in vitro. Biol Reprod. 1998;58:1316–1320. doi: 10.1095/biolreprod58.5.1316. [DOI] [PubMed] [Google Scholar]
  • 33.Van de Stadt JJM, Schroeder AC, Eppig JJ. Culture media for mouse oocyte maturation affect subsequent embryonic development. Mol Reprod Dev. 1990;25:164–171. doi: 10.1002/mrd.1080250209. [DOI] [PubMed] [Google Scholar]
  • 34.Leese HJ, Lenton EA. Gluconse and lactate in human follicular fluid: Concentrations and interrelationships. Hum Reprod. 1990;5:915–919. doi: 10.1093/oxfordjournals.humrep.a137219. [DOI] [PubMed] [Google Scholar]
  • 35.Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–353. doi: 10.1016/s0015-0282(16)58097-2. [DOI] [PubMed] [Google Scholar]
  • 36.Carroll J, Whittingham DG, Wood MJ. Effect of gonadotropin environment on growth and development of isolated mouse primary ovarian follicles. J Reprod Fertil. 1991;93:71–77. doi: 10.1530/jrf.0.0930071. [DOI] [PubMed] [Google Scholar]
  • 37.Kito S, Bavister BD. Gonadotropins, serum, and amino acids alter nuclear maturation, cumulus expansion, and oocyte morphology in hamster cumulus-oocyte complexes in vitro. Biol Reprod. 1997;56:1281–1289. doi: 10.1095/biolreprod56.5.1281. [DOI] [PubMed] [Google Scholar]
  • 38.Boland NI, Humpherson PG, Leese HJ, Gosden RG. The effect of glucose metabolism on murine follicle development and steroidogenesis in vitro. Hum Reprod. 1994;9:617–623. doi: 10.1093/oxfordjournals.humrep.a138559. [DOI] [PubMed] [Google Scholar]
  • 39.Watson AJ, Watson PH, Warnes D, Walker SK, Armstrong DT, Seamark Preimplantation development of in vitro-matured and in vitro-fertilized ovine zygotes: Comparison between coculture on oviduct epithelial cell monolayers and culture under low oxygen atmosphere. Biol Reprod. 1994;50:715–724. doi: 10.1095/biolreprod50.4.715. [DOI] [PubMed] [Google Scholar]
  • 40.Meister A. Glutathione deficiency produced by inhibition of its synthesis and its reversal; Application in research and therapy. Pharmacol Therap. 1991;51:155–194. doi: 10.1016/0163-7258(91)90076-x. [DOI] [PubMed] [Google Scholar]
  • 41.Yoshida M, Kshigaka K, Nagai T, Chikyu M, Pursel VG. Glutathione concentration during maturation and after fertilization in pig oocytes: Relevance to the ability of oocytes to form male pronucleus. Biol Reprod. 1993;49:89–94. doi: 10.1095/biolreprod49.1.89. [DOI] [PubMed] [Google Scholar]
  • 42.Kito S, Bavister BD. Male pronuclear formation and early embryonic development of hamster oocytes matured in vitro with gonadotropins, amino acids and cysteamine. J Reprod Fertil. 1997;110:35–40. doi: 10.1530/jrf.0.1100035. [DOI] [PubMed] [Google Scholar]
  • 43.Warburg O. The Metabolism of Tumours. London: Arnold Constable; 1930. [Google Scholar]
  • 44.Brand KA, Hermfisse U. Aerobic glycolysis by proliferating cells: A protective strategy against reactive oxygen species. FASEB J. 1997;11:388–395. doi: 10.1096/fasebj.11.5.9141507. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES