Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4298–4301. doi: 10.1073/pnas.81.14.4298

Structures of cysteine-containing peptides in isosafrole-inducible rat hepatic microsomal cytochrome P-450d: sequence homology with 3-methylcholanthrene-induced cytochrome P-450c.

M Haniu, D E Ryan, W Levin, J E Shively
PMCID: PMC345575  PMID: 6589594

Abstract

Six cysteine-containing tryptic peptides were isolated from rat liver cytochrome P-450d, the major isosafrole-induced isozyme, by reversed-phase high performance liquid chromatography. The six peptides contained a total of seven cysteine residues. Five of the peptides have significant sequence homology (20/22, 10/16, 8/13, 13/18, and 5/9 identical residues) to cysteine-containing peptides in cytochrome P-450c, the major isozyme induced by 3-methylcholanthrene. One of the peptides (partial sequence, Cys-Ile-Gly-Glu-Ile-Pro-Ala-Lys-Trp-Glu-Val-Phe-Leu-) can be included in the highly conserved COOH-terminal domain found in all cytochromes P-450 that have been sequenced. Although this domain has been postulated as the heme-binding domain by some investigators, it is not homologous to the heme-binding region in cytochrome P-450cam. A second peptide (partial sequence, Asp-Pro-Thr-Ser-Val-Ser-Ser-Cys-Tyr-Leu-Glu-Glu-His-Val-Ser-Lys) is, however, a possible candidate for the heme attachment site to cysteine because of its weak homology to the heme-binding site in cytochrome P-450cam. These results indicate that either the location of the heme-binding site is different in various forms of cytochromes P-450 or the amino acid sequence surrounding the heme-binding cysteine is not highly conserved among these proteins.

Full text

PDF
4298

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botelho L. H., Ryan D. E., Yuan P. M., Kutny R., Shively J. E., Levin W. Amino-terminal and carboxy-terminal sequence of hepatic microsomal cytochrome P-450d, a unique hemoprotein from rats treated with isosafrole. Biochemistry. 1982 Mar 16;21(6):1152–1155. doi: 10.1021/bi00535a007. [DOI] [PubMed] [Google Scholar]
  2. Fujii-Kuriyama Y., Mizukami Y., Kawajiri K., Sogawa K., Muramatsu M. Primary structure of a cytochrome P-450: coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver. Proc Natl Acad Sci U S A. 1982 May;79(9):2793–2797. doi: 10.1073/pnas.79.9.2793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
  4. Haniu M., Armes L. G., Tanaka M., Yasunobu K. T., Shastry B. S., Wagner G. C., Gunsalus I. C. The primary structure of the monoxygenase cytochrome P450CAM. Biochem Biophys Res Commun. 1982 Apr 14;105(3):889–894. doi: 10.1016/0006-291x(82)91053-1. [DOI] [PubMed] [Google Scholar]
  5. Hawke D., Yuan P. M., Shively J. E. Microsequence analysis of peptides and proteins. II. Separation of amino acid phenylthiohydantoin derivatives by high-performance liquid chromatography on octadecylsilane supports. Anal Biochem. 1982 Mar 1;120(2):302–311. doi: 10.1016/0003-2697(82)90351-7. [DOI] [PubMed] [Google Scholar]
  6. Heinemann F. S., Ozols J. The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450. J Biol Chem. 1983 Apr 10;258(7):4195–4201. [PubMed] [Google Scholar]
  7. Mizukami Y., Sogawa K., Suwa Y., Muramatsu M., Fujii-Kuriyama Y. Gene structure of a phenobarbital-inducible cytochrome P-450 in rat liver. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3958–3962. doi: 10.1073/pnas.80.13.3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Morville A. L., Thomas P., Levin W., Reik L., Ryan D. E., Raphael C., Adesnik M. The accumulation of distinct mRNAs for the immunochemically related cytochromes P-450c and P-450d in rat liver following 3-methylcholanthrene treatment. J Biol Chem. 1983 Mar 25;258(6):3901–3906. [PubMed] [Google Scholar]
  9. Parkinson A., Safe S. H., Robertson L. W., Thomas P. E., Ryan D. E., Reik L. M., Levin W. Immunochemical quantitation of cytochrome P-450 isozymes and epoxide hydrolase in liver microsomes from polychlorinated or polybrominated biphenyl-treated rats. A study of structure-activity relationships. J Biol Chem. 1983 May 10;258(9):5967–5976. [PubMed] [Google Scholar]
  10. Rampersaud A., Walz F. G., Jr At least six forms of extremely homologous cytochromes P-450 in rat liver are encoded at two closely linked genetic loci. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6542–6546. doi: 10.1073/pnas.80.21.6542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reik L. M., Levin W., Ryan D. E., Thomas P. E. Immunochemical relatedness of rat hepatic microsomal cytochromes P-450c and P-450d. J Biol Chem. 1982 Apr 10;257(7):3950–3957. [PubMed] [Google Scholar]
  12. Ryan D. E., Thomas P. E., Levin W. Hepatic microsomal cytochrome P-450 from rats treated with isosafrole. Purification and characterization of four enzymic forms. J Biol Chem. 1980 Aug 25;255(16):7941–7955. [PubMed] [Google Scholar]
  13. Ryan D. E., Thomas P. E., Levin W. Purification of characterization of a minor form of hepatic microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls. Arch Biochem Biophys. 1982 Jun;216(1):272–288. doi: 10.1016/0003-9861(82)90212-0. [DOI] [PubMed] [Google Scholar]
  14. Ryan D. E., Thomas P. E., Reik L. M., Levin W. Purification, characterization and regulation of five rat hepatic microsomal cytochrome P-450 isozymes. Xenobiotica. 1982 Nov;12(11):727–744. doi: 10.3109/00498258209038947. [DOI] [PubMed] [Google Scholar]
  15. Shively J. E., Hawke D., Jones B. N. Microsequence analysis of peptides and proteins. III. Artifacts and the effects of impurities on analysis. Anal Biochem. 1982 Mar 1;120(2):312–312. doi: 10.1016/0003-2697(82)90352-9. [DOI] [PubMed] [Google Scholar]
  16. Shively J. E. Sequence determinations of proteins and peptides at the nanomole and subnanomole level with a modified spinning cup sequenator. Methods Enzymol. 1981;79(Pt B):31–48. doi: 10.1016/s0076-6879(81)79011-6. [DOI] [PubMed] [Google Scholar]
  17. Tarr G. E., Black S. D., Fujita V. S., Coon M. J. Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6552–6556. doi: 10.1073/pnas.80.21.6552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thomas P. E., Reik L. M., Ryan D. E., Levin W. Characterization of nine monoclonal antibodies against rat hepatic cytochrome P-450c. Delineation of at least five spatially distinct epitopes. J Biol Chem. 1984 Mar 25;259(6):3890–3899. [PubMed] [Google Scholar]
  19. Thomas P. E., Reik L. M., Ryan D. E., Levin W. Induction of two immunochemically related rat liver cytochrome P-450 isozymes, cytochromes P-450c and P-450d, by structurally diverse xenobiotics. J Biol Chem. 1983 Apr 10;258(7):4590–4598. [PubMed] [Google Scholar]
  20. Vlasuk G. P., Ghrayeb J., Ryan D. E., Reik L., Thomas P. E., Levin W., Walz F. G., Jr Multiplicity strain differences, and topology of phenobarbital-induced cytochromes P-450 in rat liver microsomes. Biochemistry. 1982 Feb 16;21(4):789–798. doi: 10.1021/bi00533a033. [DOI] [PubMed] [Google Scholar]
  21. Vlasuk G. P., Ryan D. E., Thomas P. E., Levin W., Walz F. G., Jr Polypeptide patterns of hepatic microsomes from Long-Evans rats treated with different xenobiotics. Biochemistry. 1982 Nov 23;21(24):6288–6292. doi: 10.1021/bi00267a038. [DOI] [PubMed] [Google Scholar]
  22. Yang C. Y., Pauly E., Kratzin H., Hilschmann N. Chromatographie und Rechromatographie in der Hochdruckflüssigkeitschromatographie von Peptidgemischen. Die vollständige Primärstruktur einer Immunglobulin L-Kette vom kappa-Typ, Subgruppe I (Bence-Jones-Protein Den). Hoppe Seylers Z Physiol Chem. 1981 Aug;362(8):1131–1146. [PubMed] [Google Scholar]
  23. Yuan P. M., Nakajin S., Haniu M., Shinoda M., Hall P. F., Shively J. E. Steroid 21-hydroxylase (cytochrome P-450) from porcine adrenocortical microsomes: microsequence analysis of cysteine-containing peptides. Biochemistry. 1983 Jan 4;22(1):143–149. doi: 10.1021/bi00270a021. [DOI] [PubMed] [Google Scholar]
  24. Yuan P. M., Ryan D. E., Levin W., Shively J. E. Identification and localization of amino acid substitutions between two phenobarbital-inducible rat hepatic microsomal cytochromes P-450 by micro sequence analyses. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1169–1173. doi: 10.1073/pnas.80.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES