Abstract
Purpose:This study was undertaken to evaluate simplified methods of human embryo coculture using either attached or nonattached autologous cumulus tissue.
Methods:Eight hundred one zygotes were cultured for 48 hr in a prospective, randomized trial comparing culture of embryos either with intact cumulus tissue, with cumulus tissue added to the droplet of culture medium, or without any cumulus tissue. In a follow-up study, embryo quality, pregnancy rates, and implantation rates were compared in 120 consecutive patients undergoing in vitro fertilization with a coculture system using cumulus tissue compared to a cohort of 127 patients undergoing IVF immediately preceding the institution of the coculture protocol.
Results:Embryo morphology was significantly improved (P < 0.05) following culture with attached cumulus tissue (5.61 ± 0.29) and culture with added cumulus tissue (4.72 ± 0.31) compared to that of embryos grown in culture medium without cumulus tissue (3.95 ± 0.26). The clinical pregnancy rate improved from 39.4% (50/127) to 49.2% (59/120) following institution of a system of coculture with attached cumulus tissue.
Conclusions:These data indicate that a simple coculture system using autologous cumulus tissue can result in improved embryo morphology, implantation rates, and clinical pregnancy rates during in vitro fertilization. This coculture system is simple, is non-labor intensive, and eliminates many of the risks which may be present in other embryo coculture systems.
Keywords: coculture, cumulus tissues, embryo morphology, in vitro fertilization, pregnancy rates
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
REFERENCES
- 1.Bongso A, Fong CY. The effect of co-culture on human zygote development. Curr Opin Obstet Gynecol. 1993;5(5):585–593. [PubMed] [Google Scholar]
- 2.Guerin J-F, Nicollet B. Interest of co-cultures for embryos obtained by in-vitro fertilization: A French collaborative study. Hum Reprod. 1997;12(5):1043–1046. doi: 10.1093/humrep/12.5.1043. [DOI] [PubMed] [Google Scholar]
- 3.Lai YM, Chang MY, Chang FH, Lee CL, Lee JD, Chang SY, Huang HY, Wang ML, Chan PJ, Soong YK. The effects of Vero cell co-culture on human zygotes resulting from in vitro fertilization and oocytes following subzonal insemination. Chang Keng I Heush. 1996;19(3):203–210. [PubMed] [Google Scholar]
- 4.Menezo YJ, Sakkas D, Janny L. Co-culture of the early human embryo: Factors affecting human blastocyst formation in vitro. Microsc Res Tech. 1995;32(1):50–56. doi: 10.1002/jemt.1070320105. [DOI] [PubMed] [Google Scholar]
- 5.Nieto FS, Watkins WB, Lopata A, Baker HWG, Edgar DH. The effects of co-culture with autologous cryopreserved endometrial cells on human in vitro fertilization and early embryo morphology: A randomized study. J Assist Reprod Genet. 1996;13:386–389. doi: 10.1007/BF02066169. [DOI] [PubMed] [Google Scholar]
- 6.Vlad M, Walker D, Kennedy RC. Nuclei number in human embryos co-cultured with human ampullary cells. Hum Reprod. 1996;11(8):1678–1686. doi: 10.1093/oxfordjournals.humrep.a019469. [DOI] [PubMed] [Google Scholar]
- 7.Wiemer KE, Cohen J, Wiker SR, Malter HE, Wright G, Godke RA. Co-culture of human zygotes on fetal bovine uterine fibroblasts: embryonic morphology and implantation. Fertil Steril. 1989;52(3):503–508. doi: 10.1016/s0015-0282(16)60926-3. [DOI] [PubMed] [Google Scholar]
- 8.Wiemer KE, Garrisi J, Steuerwald N, Alikani M, Reing AM, Ferrara TA, Noyes N, Cohen J. Beneficial aspects of co-culture with assisted hatching when applied to multiple-failure in-vitro fertilization patients. Hum Reprod. 1996;11(11):2429–2433. doi: 10.1093/oxfordjournals.humrep.a019130. [DOI] [PubMed] [Google Scholar]
- 9.Yeung WSB, Lau EYL, Chan AYF, Ho PC. The production of interleukin-1 alpha immunoreactivity by human oviductal cells in a co-culture system. J Assist Reprod Genet. 1996;13:762–767. doi: 10.1007/BF02066496. [DOI] [PubMed] [Google Scholar]
- 10.Thibodeaux JK, Godke RA. Potential use of embryo co-culture with human in vitro fertilization procedures. J Assist Reprod Genet. 1995;12:665–677. doi: 10.1007/BF02212891. [DOI] [PubMed] [Google Scholar]
- 11.Ben-Chetrit A, Jurisicova A, Casper RF. Co-culture with ovarian cancer cell enhances human blastocyst formation in vitro. Fertil Steril. 1996;65(3):664–666. [PubMed] [Google Scholar]
- 12.Dirnfeld M, Goldman S, Gonen Y, Koifman M, Calderon I, Abramovici H. A simplified co-culture system with luteinized granulosa cells improves embryo quality and implantation rates: A controlled study. Fertil Steril. 1997;67(1):120–122. doi: 10.1016/s0015-0282(97)81867-5. [DOI] [PubMed] [Google Scholar]
- 13.Quinn P, Margalit R. Beneficial effects of co-culture with cumulus cells on blastocyst formation in a prospective trial with supernumerary human embryos. J Assist Reprod Genet. 1995;13:9–14. doi: 10.1007/BF02068862. [DOI] [PubMed] [Google Scholar]
- 14.Roudebush WE, Levine AS, Lodge JS, Tsai CC, Butler WJ. Human follicular fluid and mouse cumulus cells act synergistically to enhance preimplantation mouse Balb/cJ embryo development. J Assist Reprod Genet. 1995;12:733–737. doi: 10.1007/BF02212902. [DOI] [PubMed] [Google Scholar]
- 15.Fukaya T, Chida S, Murakami T, Yajima A. Is direct cell-to-cell contact needed to improve embryonic development in co-culture? Tohoku J Exp Med. 1996;180(3):225–232. doi: 10.1620/tjem.180.225. [DOI] [PubMed] [Google Scholar]
- 16.Abeydeera LR, Wang WH, Cantley TC, Rieke A, Day BN. Co-culture with follicular shell pieces can enhance the developmental competence of pig oocytes after in vitro fertilization: relevance to intracellular glutathione. Biol Reprod. 1998;58:213–218. doi: 10.1095/biolreprod58.1.213. [DOI] [PubMed] [Google Scholar]
- 17.Desai NN, Goldfarb JM. Growth factor/cytokine secretion by a permanent human endometrial cell line with embryotrophic properties. J Assist Reprod Genet. 1996;13(7):546–550. doi: 10.1007/BF02066606. [DOI] [PubMed] [Google Scholar]
- 18.Lim JM, Hansel W. Improved development of in vitro-derived bovine embryos by use of a nitric oxide scavenger in a cumulusgranulosa cell co-culture system. Mol Reprod Dev. 1998;50(1):45–53. doi: 10.1002/(SICI)1098-2795(199805)50:1<45::AID-MRD6>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- 19.Seifer DB, Freeman MR, Gardiner AC, Hill GA, Schneyer AL, Vanderhyden BC. Autologous granulosa cell co-culture demonstrates zygote suppression of granulosa cell steroidogenesis. Fertil Steril. 1996;66(3):425–429. [PubMed] [Google Scholar]
- 20.de Matos D.H., Furnus C.C., Moses D.F. Glutathione synthesis during in vitro maturation of bovine oocytes: Role of cumulus cells. Biol Reprod. 1997;57:1420–1425. doi: 10.1095/biolreprod57.6.1420. [DOI] [PubMed] [Google Scholar]
- 21.Bongso A, Ng SC, Fong CY, Ratnam S. Co-cultures: A new lead in embryo quality improvement for assisted reproduction. Fertil Steril. 1991;56(2):179–191. doi: 10.1016/s0015-0282(16)54468-9. [DOI] [PubMed] [Google Scholar]
- 22.Leppens G, Sakkas D. Differential effect of epithelial cell-conditioned medium fractions on preimplantation mouse embryo development. Hum Reprod. 1995;10(5):1178–1183. doi: 10.1093/oxfordjournals.humrep.a136114. [DOI] [PubMed] [Google Scholar]
- 23.Lim JM, Hansel W. Roles of growth factors in the development of bovine embryos fertilized in vitro and cultures singly in a defined medium. Reprod Fertil Dev. 1996;8(8):1199–1205. doi: 10.1071/rd9961199. [DOI] [PubMed] [Google Scholar]
- 24.Liu LPS, Chan STH, Ho PC, Yeung WSB. Human oviductal cells produce high molecular weight factor(s) that improves the development of mouse embryo. Hum Reprod. 1995;10(10):2781–2786. doi: 10.1093/oxfordjournals.humrep.a135791. [DOI] [PubMed] [Google Scholar]