Skip to main content
Age logoLink to Age
. 1999 Jul;22(3):107–113. doi: 10.1007/s11357-999-0013-4

Dietary restriction modulates synaptic structural dynamics in the aging hippocampus

Carlo Bertoni-Freddari 1, Patrizia Fattoretti 1, Ugo Caselli 1, Tiziana Casoli 1, Giuseppina Di Stefano 1, Sergio Algeri 2
PMCID: PMC3455806  PMID: 23604408

Abstract

A computer-assisted morphometric study has been carried out on the synaptic ultrastructural features in the hippocampus of 14-month old (DR14) and 27-month old (DR27) dietary restricted (−50% lipids and −35% carbohydrates) rats. Age-matched controls were maintained on an ad libitum (AL) feeding schedule. Synaptic numeric density (Nv), surface density (Sv) and average area (S) were the parameters measured. In old AL vs. adult AL animals, Nv decreased to a not significant extent, while S increased and Sv decreased significantly. In DR14 rats vs. AL littermates Nv increased significantly, but S and Sv were unchanged. DR27 rats vs. age-matched AL controls showed a significant increase of Nv and Sv while S was significantly decreased. Comparing DR14 vs. DR27, no significant difference due to age was documented. Both in DR14 and in DR27 groups the percent distribution of S showed a marked increase of smaller contact zones. Despite reporting on discrete aspects of synaptic ultrastructure, Nv and S are supported to be in an inverse relationship which aims at maintaining Sv constant. Thus, these three ultrastructural parameters when taken together per experimental group, appear to provide information on synaptic morphological rearrangements. In this context, the percent increase of smaller synapses in DR animals is consistent with the idea of a marked remodelling process. Considering previous data from the same groups of rats reporting significant changes in neuronal membrane lipid composition and fluidity, we interpret our findings to account for a positive modulation of dietary restriction on the synaptic structural dynamics.

Full Text

The Full Text of this article is available as a PDF (867.3 KB).

References

  • 1.Barrows C.H., Kokkonen G.C. Nutrition and aging: human and animal studies. New York: Raven Press; 1984. Nutrition in Gerontology; pp. 279–322. [Google Scholar]
  • 2.Yu B.P., Masoro E.J., McMahan C.A. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic and longevity characteristics. J. Gerontol. 1985;40:657–677. doi: 10.1093/geronj/40.6.657. [DOI] [PubMed] [Google Scholar]
  • 3.Zamenhof S., VanMarthens F. Effects of prenatal and chronic undernutrition on aging and survival in rats. J. Nutr. 1982;112:972–977. doi: 10.1093/jn/112.5.972. [DOI] [PubMed] [Google Scholar]
  • 4.Weindruch R., Gottesman S.R.S., Walford R.L. Modification of age-related immune decline in mice dietarily restricted from or after midadulthood. Proc. Natl. Acad. Sci. USA. 1982;79:898–902. doi: 10.1073/pnas.79.3.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Fernandes G., Yunis E.J., Good R.A. Influence of diet on survival of mice. Proc. Natl. Acad. Sci. USA. 1976;73:1279–1283. doi: 10.1073/pnas.73.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Weindruch R., Walford R.L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr. 1986;116:641–654. doi: 10.1093/jn/116.4.641. [DOI] [PubMed] [Google Scholar]
  • 7.Yu B.P., Masoro E.J., Murata I., Bertrand H.A., Lynd F.T. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontol. 1982;37:130–141. doi: 10.1093/geronj/37.2.130. [DOI] [PubMed] [Google Scholar]
  • 8.Goodrick C.L. Effects of lifelong restricted feeding on complex maze performances in rats. Age. 1984;7:1–2. doi: 10.1007/BF02431887. [DOI] [Google Scholar]
  • 9.Ingram D.K., Weindruch R., Spangler E.L., Freeman J. R., Walford R.L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 1987;42:78–81. doi: 10.1093/geronj/42.1.78. [DOI] [PubMed] [Google Scholar]
  • 10.Pitsikas N., Carli M., Fidecka S., Algeri S. Effect of life-long hypocaloric diet on age-related changes in motor and cognitive behavior in a rat population. Neurobiol. Aging. 1990;11:417–423. doi: 10.1016/0197-4580(90)90008-N. [DOI] [PubMed] [Google Scholar]
  • 11.Roth G.S., Ingram D.K., Joseph J.A. Delayed loss of striatal dopamine receptors during aging of dietarily restricted rats. Brain Res. 1984;300:27–32. doi: 10.1016/0006-8993(84)91337-4. [DOI] [PubMed] [Google Scholar]
  • 12.Moroi-Fetters S.E., Mervis R.F., London E.D., Ingram D.K. Dietary restriction suppresses age-related changes in dendritic spines. Neurobiol. Aging. 1989;10:317–322. doi: 10.1016/0197-4580(89)90042-0. [DOI] [PubMed] [Google Scholar]
  • 13.Tacconi M.T., Lligoña L., Salmona M., Pitsikas N., Algeri S. Aging and food restriction: Effect on lipids of cerebral cortex. Neurobiol. Aging. 1991;12:55–59. doi: 10.1016/0197-4580(91)90039-M. [DOI] [PubMed] [Google Scholar]
  • 14.Algeri S., Biagini L., Manfridi A., Pitsikas N. Age-related ability of rats kept on a life-long hypocaloric diet in a spatial memory test. Longitudinal observations. Neurobiol. Aging. 1991;12:277–282. doi: 10.1016/0197-4580(91)90003-3. [DOI] [PubMed] [Google Scholar]
  • 15.Bertoni-Freddari C., Fattoretti P., Paoloni R., Caselli U., Galeazzi L., Meier-Ruge W. Synaptic structural dynamics and aging. Gerontology. 1996;42:170–180. doi: 10.1159/000213789. [DOI] [PubMed] [Google Scholar]
  • 16.Calverley R.K.S., Jones D.G. Contribution of dendritic spines and perforated synapses to synaptic plasticity. Brain Res. Rev. 1990;15:215–249. doi: 10.1016/0165-0173(90)90002-6. [DOI] [PubMed] [Google Scholar]
  • 17.deToledo-Morrell L., Geinisman Y., Morrell F. Age-dependent alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiol. Aging. 1988;9:581–590. doi: 10.1016/s0197-4580(88)80117-9. [DOI] [PubMed] [Google Scholar]
  • 18.Dyson S.E., Jones D.G. Synaptic remodelling during development and maturation: junction differentiation and splitting as a mechanism for modifying connectivity. Dev. Brain Res. 1984;13:125–137. doi: 10.1016/0165-3806(84)90084-1. [DOI] [PubMed] [Google Scholar]
  • 19.Geinisman Y., deToledo-Morrell L., Morrell F., Heller R.E. Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Progr. Neurobiol. 1995;45:223–252. doi: 10.1016/0301-0082(94)00047-L. [DOI] [PubMed] [Google Scholar]
  • 20.Bertoni-Freddari C., Giuli C., Pieri C., Paci D. Quantitative investigation of the morphological plasticity of synaptic junctions in rat dentate gyrus during aging. Brain Res. 1986;366:187–192. doi: 10.1016/0006-8993(86)91294-1. [DOI] [PubMed] [Google Scholar]
  • 21.Bertoni-Freddari C., Fattoretti P., Casoli T., Meier-Ruge W., Ulrich J. Morphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s disease. Brain Res. 1990;517:69–75. doi: 10.1016/0006-8993(90)91009-6. [DOI] [PubMed] [Google Scholar]
  • 22.Bertoni-Freddari C., Fattoretti P., Caselli U., Paoloni R., Meier-Ruge W. Vitamin E deficiency as a model of precocious brain aging: assessment by x-ray microanalysis and morphometry. Scann. Microsc. 1995;9:289–302. [PubMed] [Google Scholar]
  • 23.Chen S., Hillman D.E. Giant spines and enlarged synapses induced in Purkinje cells by malnutrition. Brain Res. 1980;187:487–493. doi: 10.1016/0006-8993(80)90221-8. [DOI] [PubMed] [Google Scholar]
  • 24.Chen S., Hillman D.E. Robust synaptic plasticity of striatal cells following partial differentiation. Brain Res. 1990;520:103–114. doi: 10.1016/0006-8993(90)91695-D. [DOI] [PubMed] [Google Scholar]
  • 25.Hillman D., Chen S. Reciprocal relationship between size of postsynaptic densities and their number: constancy in contact area. Brain Res. 1984;295:325–343. doi: 10.1016/0006-8993(84)90981-8. [DOI] [PubMed] [Google Scholar]
  • 26.Geinisman Y., de Toledo-Morrell L., Morrell F. Aged rats need a preserved complement of perforated axospinous synapses per hippocampal neuron to mantain good spatial memory. Brain Res. 1986;398:266–275. doi: 10.1016/0006-8993(86)91486-1. [DOI] [PubMed] [Google Scholar]
  • 27.DeKosky S.T., Scheff S.W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 1990;27:457–464. doi: 10.1002/ana.410270502. [DOI] [PubMed] [Google Scholar]
  • 28.Bailey C.H., Kandel E.R. Structural changes accompanying memory storage. Ann. Rev. Physiol. 1993;55:397–426. doi: 10.1146/annurev.ph.55.030193.002145. [DOI] [PubMed] [Google Scholar]
  • 29.Carlin R.K., Siekevitz P. Plasticity in the central nervous system, do synapses divide? Proc. Natl. Acad. Sci. USA. 1983;80:3517–3521. doi: 10.1073/pnas.80.11.3517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Coleman P.D., Flood D.G. Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol. Aging. 1987;8(6):521–545. doi: 10.1016/0197-4580(87)90127-8. [DOI] [PubMed] [Google Scholar]
  • 31.Bertoni-Freddari C., Fattoretti P., Casoli T., Caselli U., Meier-Ruge W. Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Analyt. Quant. Cytol. Histol. 1996;18:209–213. [PubMed] [Google Scholar]
  • 32.Bertoni-Freddari C. Age-dependent deterioration of neuronal membranes and the pathogenesis of Alzheimer’s disease: a hypothesis. Med. Hypoth. 1988;25:147–149. doi: 10.1016/0306-9877(88)90052-7. [DOI] [PubMed] [Google Scholar]
  • 33.Bertoni-Freddari C., Fattoretti P., Casoli T., Meier-Ruge W., Ulrich J. Advances in Behavioural Biology. Vol. 38A. Basic, Clinical, and Therapeutic Aspects of Alzheimer’s and Parkinson’s Disease. New York: Plenum Press; 1990. The role of neuronal membranes deterioration in the pathogenesis of Alzheimer’s disease: an ultrastructural perspective; pp. 147–152. [Google Scholar]
  • 34.Terry R.D., Masliah E., Salmon D.P., Butters N., DeTeresa R., Hill R., Hansen L.A., Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991;30:572–580. doi: 10.1002/ana.410300410. [DOI] [PubMed] [Google Scholar]
  • 35.Merry B.J., Holehan A.M. Effects of diet on aging. Boca Raton: CRC Press; 1994. Physiological Basis of Aging and Geriatrics; pp. 285–310. [Google Scholar]
  • 36.Joseph J.A., Algeri S., De-Cesare A., Comuzio M., Erat S., Kelly J., Cagnotto A., Mennini T. A reduced calorie-high fiber diet retards age-associated decreases in muscarinic receptor sensitivity. Neurobiol. Aging. 1995;16:607–612. doi: 10.1016/0197-4580(95)00073-N. [DOI] [PubMed] [Google Scholar]
  • 37.Sohal R.S., Ku H.H., Agarwal S., Forster M.J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 1994;74:121–133. doi: 10.1016/0047-6374(94)90104-X. [DOI] [PubMed] [Google Scholar]
  • 38.Sohal R.S., Agarwal S., Candas M., Forster M.J., Lal H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev. 1994;76:215–224. doi: 10.1016/0047-6374(94)91595-4. [DOI] [PubMed] [Google Scholar]
  • 39.Yu B.P. Antioxidant action of dietary restriction in the aging process. J. Nutr. Sci. Vitaminol. 1993;39:575–583. doi: 10.3177/jnsv.39.supplement_s75. [DOI] [PubMed] [Google Scholar]
  • 40.Choi J.H., Yu B.P. Brain synaptosomal aging: free radicals and membrane fluidity. Free Rad. Biol. & Med. 1995;18(2):133–139. doi: 10.1016/0891-5849(94)00106-T. [DOI] [PubMed] [Google Scholar]
  • 41.Ingram D.K. Effects of dietary restriction on brain and behavioural function in aging rodents. Turnbull CT: Food and Nutrition Press, Inc.; 1991. The Potential for Nutritional Modulation of Aging Processes; pp. 289–310. [Google Scholar]
  • 42.Weibel E.R. Stereological Methods: Practical Methods for Biological Morphometry. Vol. I. Sampling of Tissue. London: Academic Press, Inc; 1979. pp. 63–100. [Google Scholar]
  • 43.Williams M.A. Quantitative methods in biology. Amsterdam: Elsevier-North Holland; 1977. Practical Methods in Electron Microscopy; pp. 39–44. [Google Scholar]
  • 44.Desmond N.L., Levy W.B. Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. J. Comp. Neurol. 1986;253:466–475. doi: 10.1002/cne.902530404. [DOI] [PubMed] [Google Scholar]
  • 45.Desmond N.L., Levy W.B. Changes in postsynaptic density with long-term potentiation in the hippocampal dentate gyrus. J. Comp. Neurol. 1986;253:476–482. doi: 10.1002/cne.902530405. [DOI] [PubMed] [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES