Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2002 Dec;19(12):555–560. doi: 10.1023/A:1021259031267

The Maturity of Human Cumulus-Free Oocytes Is Positively Related to Blastocyst Development and Viability

Fu-Jen Huang 1,2, Hsuan-Wei Huang 1, Kuo-Chung Lan 1, Fu-Tsai Kung 1, Yi-Chi Lin 1, Hsueh-Wen Chang 3, Shiuh-Young Chang 1,2,
PMCID: PMC3455828  PMID: 12503887

Abstract

Purpose: We investigated whether the human oocyte maturity at the removal of cumulus/corona cells affects the embryo outcome in vitro.

Methods: A total of 620 oocytes, which subsequently underwent blastocyst culture, were included in this analysis. Oocytes that were in prophase or Metaphase I of meiosis at the removal of cumulus/corona cells were in Group II. Oocytes that were in Metaphase II at the removal of cumulus/corona cells were in Group I.

Results: Group I oocytes yielded the highest fertilization rates (96.3% vs. 77.1%, P < 0.001). The incidence of Group II oocytes developing to the blastocyst stage was significantly less than from Group I oocytes (38.1% vs. 86.1%, P < 0.001). The percentage of top-scoring blastocysts from Group I oocytes was higher than that of Group II oocytes (95.4% vs. 76.2%, P < 0.001).

Conclusions: Oocyte maturity at the removal of cumulus/corona cells needs to be considered in selecting good quality blastocysts for embryo transfer.

Keywords: Blastocyst development, cumulus-free oocytes, fertilization rate, intrtacytoplasmic sperm injection

Full Text

The Full Text of this article is available as a PDF (62.5 KB).

REFERENCES

  • 1.Diamond MP, Hill GA, Webster BW, Herbert CM, Rogers BJ, Osteen KG, Maxson WS, Vaughn WK, Wentz AC. Comparison of human menopausal gonadotropin, clomiphen citrate, and combined human menopausal gonadotropin-clomiphene citrate stimulation protocols for in vitro fertilization. Fertil Steril. 1986;46:1108–1112. doi: 10.1016/s0015-0282(16)49889-4. [DOI] [PubMed] [Google Scholar]
  • 2.Nevus S, Hedon B, Bringer J, Chinchole JM, Arnal F, Humeau C, Cristol P, Viala JL. Ovarian stimulation by a combination of a gonadotropin-releasing hormone agonist and gonadotropins for in vitro fertilization. Fertil Steril. 1987;47:639–643. doi: 10.1016/s0015-0282(16)59115-8. [DOI] [PubMed] [Google Scholar]
  • 3.Hwang FR, Chang MY, Soong YK. Gonadotropin stimulation after pituitary desensitization with leuprolide acetate comparison of FSH/hMG andhMGalone cycles—A study of 166 cases. Chang Gung Med J. 1993;16:223–230. [PubMed] [Google Scholar]
  • 4.Strickler RC, Radwanska E, Williams DB. Controlled ovarian hyperstimulation regimens in assisted reproductive technologies. Am J Obstet Gynecol. 1995;172:766–773. doi: 10.1016/0002-9378(95)90151-5. [DOI] [PubMed] [Google Scholar]
  • 5.Hansen LM, Batzer FR, Gutmann JN, Corson SL, Kelly MP, Gocial B. Evaluating ovarian reserve: Follicle stimulating hormone and oestradiol variability during cycle days 2–5. Hum Reprod. 1996;11:486–489. doi: 10.1093/humrep/11.3.486. [DOI] [PubMed] [Google Scholar]
  • 6.Loumaye E, Billion JM, Mine JM, Psalti L, Pensis M, Thomas K. Prediction of individual response to controlled ovarian hyperstimulation by means of a clomiphene citrate challenge test. Fertil Steril. 1990;53:295–301. doi: 10.1016/s0015-0282(16)53284-1. [DOI] [PubMed] [Google Scholar]
  • 7.Winslow KL, Toner JP, Brzyski RG, Oehninger SC, Acosta AA, Muasher SJ. The gonadotropin-releasing hormone agonist stimulation test: A sensitive predictor of performance in the flare-up in vitro fertilization cycle. Fertil Steril. 1991;56:711–717. doi: 10.1016/s0015-0282(16)54604-4. [DOI] [PubMed] [Google Scholar]
  • 8.Huang FJ, Chang SY, Tsai MY, Kung FT, Wu JF, Chang HW. Determination of the efficiency of controlled ovarian hyperstimulation in the gonadotropin-releasing hormone agonist-suppression cycle using initial follicle count during gonadotropin stimulation. J Assist Reprod Genet. 2001;18:91–96. doi: 10.1023/A:1026582608645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Langley MT, Marek DM, Gardner DK, Doody KM, Doody KJ. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16:902–908. doi: 10.1093/humrep/16.5.902. [DOI] [PubMed] [Google Scholar]
  • 10.Perreault DS. Chromatin remodeling in mammalian zygotes. Mutat Res. 1992;296:43–55. doi: 10.1016/0165-1110(92)90031-4. [DOI] [PubMed] [Google Scholar]
  • 11.Janssenswillen C, Nagy ZP, Van Steirteghem A. Maturation of human cumulus-free germinal vesicle-stage oocytes to metaphase II by coculture with monolayer Vero cells. Hum Rreprod. 1995;10:375–378. doi: 10.1093/oxfordjournals.humrep.a135947. [DOI] [PubMed] [Google Scholar]
  • 12.Sirard MA, Florman HM, Leibfried-Rutledge ML, Barnes FL, Sims ML, First NL. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod. 1989;40:1257–1263. doi: 10.1095/biolreprod40.6.1257. [DOI] [PubMed] [Google Scholar]
  • 13.Leibfried-Rutledge ML, Florman HM, First NL:The molecular biology of Mammalian oocyte maturation. In The Molecular Biology of Fertilization, H Schatten, G Schatten (eds), New York, Academic Press, 1989 pp 259–275
  • 14.Bachvarova R, Paynton BV. Expression of repetitive sequences in mouse oocytes. In: Firtel RA, Davidson EH, editors. In Molecular Approaches to Developmental Biology. Alan R. Liss: New York; 1987. pp. 67–76. [Google Scholar]
  • 15.World Health Organization:WHOLaboratory Manual for Examination Semen and Sperm–Cervical Mucus Interaction, 3rd edn., Cambridge, UK, Cambridge University Press, 1992
  • 16.Kruger TF, Menkveld R, Stander FS, Lombard CJ, Van der Merwe JP, Van Zyl JA, Smith K. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–1123. doi: 10.1016/s0015-0282(16)49891-2. [DOI] [PubMed] [Google Scholar]
  • 17.Huang FJ, Chang SY, Tsai MY, Kung FT, Lin YC, Wu JF, Lu YJ. Clinical implication of intracytoplasmic sperm injection using cryopreserved testicular spermatozoa in patients with azoospermia. J Reprod Med. 2000;45:310–316. [PubMed] [Google Scholar]
  • 18.Chang SY, Tsai MY. Deletion of azoospermic factor genes in Chinese azoospermic and severe oligozoospermic patients. J Assist Reprod Genet. 1999;16:237–240. doi: 10.1023/A:1020367513161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tsai MY, Huang FJ, Kung FT, Lin YC, Chang SY, Wu JF, Chang HW. The influence of polyvinylpyrrolidone on the outcome of intracytoplasmic sperm injection. J Reprod Med. 2000;45:115–120. [PubMed] [Google Scholar]
  • 20.Huang FJ, Chang SY, Tsai MY, Lin YC, Kung FT, Wu JF, Lu YJ. Relationship of human cumulus-free oocyte maturational profile with in vitro outcome parameters after intracytoplasmic sperm injection. J Assist Reprod Genet. 1999;16:483–487. doi: 10.1023/A:1020551000150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Veeck LL. In Atlas of the Human Oocyte and Early Conceptus. Baltimore, MD: Williams and Wilkins; 1991. Preembryo grading; pp. 121–149. [Google Scholar]
  • 22.Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: Toward a single blastocyst transfer. Fertil Steril. 2000;73:1155–1158. doi: 10.1016/s0015-0282(00)00518-5. [DOI] [PubMed] [Google Scholar]
  • 23.Eppig JJ, Schultz RM, O'Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol. 1994;164:1–9. doi: 10.1006/dbio.1994.1175. [DOI] [PubMed] [Google Scholar]
  • 24.Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–489. doi: 10.1071/rd9960485. [DOI] [PubMed] [Google Scholar]
  • 25.Jones GM, Trounson AO. Blastocyst stage transfer: Pitfalls and benefits. Hum Reprod. 1999;14:1405–1408. doi: 10.1093/humrep/14.6.1405. [DOI] [PubMed] [Google Scholar]
  • 26.Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positive related to blastocyst development and implantation. Hum Reprod. 2000;15:2394–2403. doi: 10.1093/humrep/15.11.2394. [DOI] [PubMed] [Google Scholar]
  • 27.Rijnders PM, Jansen CAM. The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in vitro fertilization or intracytoplasmic sperm injection. Hum Reprod. 1998;13:2869–2973. doi: 10.1093/humrep/13.10.2869. [DOI] [PubMed] [Google Scholar]
  • 28.Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. The number of eight-cell embryos is a key determinant for selecting day 3 or 5 transfer. Fertil Steril. 2000;73:558–564. doi: 10.1016/s0015-0282(99)00565-8. [DOI] [PubMed] [Google Scholar]
  • 29.Hill GA, Herbert CM, III, Freeman M, Osteen KG, Bastias MC, Wentz AC, Rogers BJ. The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil Steril. 1989;52:801–806. doi: 10.1016/s0015-0282(16)61034-8. [DOI] [PubMed] [Google Scholar]
  • 30.Ng ST, Chang TH, Wu TCJ. Prediction of the rates of fertilization, cleavage, and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertil Steril. 1999;72:412–417. doi: 10.1016/s0015-0282(99)00290-3. [DOI] [PubMed] [Google Scholar]
  • 31.Testart J, Lassalle B, Frydman R, Belaisch JC. A study of factors affecting the success of human fertilization in vitro. II. Influence of semen quality and oocyte maturity on fertilization and cleavage. Biol Reprod. 1983;28:425–431. doi: 10.1095/biolreprod28.2.425. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES