Abstract
We describe the phenomenon of light-induced structural transformations in the reaction centers (RC) of photosynthetic bacteria which makes self-regulation of the RC charge separation efficiency possible. The nature of the effect is that the light-driven electron transfer (ET) between the RC redox-cofactors causes structural changes in the protein-cofactors system and this in turn affects the ET kinetics. If the electron-conformation interaction is strong enough, then such self-regulation gives birth to a new RC conformational state of enhanced charge separation efficiency. We show experimental results of stationary and kinetic absorbance change characteristics under different photoexcitation conditions, indicating structural rearrangements on a rather long (minutes) time scale, mainly within the secondary acceptor binding pocket. To simplify the description, in constructing a theory of structure-function reorganization in the RC we employ the adiabatic approach. Final expressions enable us to make qualitative comparison with experimentally observed kinetics of the fast and slow stages of ‘free’ and ‘structurally controlled’ electron relaxation, respectively.
Keywords: Non-linear dynamics, bistability, slow conformational mode, conformational state, light-induced changes, reaction center(s), Rhodobacter sphaeroides, electron transfer, adiabatic theory
Full Text
The Full Text of this article is available as a PDF (152.9 KB).
References
- 1.Wraight C.A., Clayton R.K. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centers of Rhodopseudomonas spheroides. Biochim. Biophys. Acta. 1973;333:246–260. doi: 10.1016/0005-2728(74)90009-7. [DOI] [PubMed] [Google Scholar]
- 2.Gunner M.R. The Reaction Center Protein from Purple Bacteria: Structure and Function. In: Lee C.P., editor. Current Topics in Bioenergetics. New York: Academic Press; 1991. pp. 319–367. [Google Scholar]
- 3.Okamura M.Y., Feher G. Proton transfer in reaction centers from photosynthetic bacteria. Ann. Rev. Biochem. 1992;61:861–896. doi: 10.1146/annurev.bi.61.070192.004241. [DOI] [PubMed] [Google Scholar]
- 4.Baltscheffsky M., editor. Current Research in Photosynthesis. Dordrecht: Kluwer Academic Publishers; 1990. [Google Scholar]
- 5.Deisenhofer J., Norris J.R., editors. The Photosynthetic Reaction Center. San Diego: Academic Press; 1993. [Google Scholar]
- 6.Kleinfeld D., Okamura M.Y., Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: Evidence for light-induced structural changes. Biochemistry. 1984;23:5780–5786. doi: 10.1021/bi00319a017. [DOI] [PubMed] [Google Scholar]
- 7.Shaitan K.V., Uporov K.V., Lukashev E.P., Kononenko A.A., Rubin A.B. Photo-conformational transition causes temperature and light effects during charge recombination in reaction centers of photosynthesizing bacteria. Mol. Biol. 1991;25:560–569. [Google Scholar]
- 8.Brzezinski P., Okamura M.Y., Feher G. Structural change following the formation of D+QA– in bacterial reaction centers: Measurement of light-induced electrogenic events in RCs incorporated in a phospholipid monolayer. In: Breton J., Vermeglio A., editors. The Photosynthetic Bacterial Reaction Center II. New York: Plenum Press; 1992. pp. 321–330. [Google Scholar]
- 9.Tiede D.M., Hanson D.K. Protein relaxation following quinone reduction in Rhodobacter capsulatus: Detection of likely protonation linked optical absorbance changes of the chromophores. In: Breton J., editor. The Photosynthetic Bacterial Reaction Center II. New York: Plenum Press; 1992. pp. 341–350. [Google Scholar]
- 10.Smirnova I.A., Blomberg A., Andreasson L.-E., Brzezinski P. Effect of trypsin on bacterial photosynthetic reaction centers in the dark and under illumination: Evidence of light-induced conformational changes. In: Mathis P., editor. Photosynthesis: from Light to Biosphere. Dordrecht: Kluwer Academic Publishers; 1995. pp. 811–814. [Google Scholar]
- 11.Schoepp B., Parot P., Lavorel J., Vermeglio A. Charges recombination kinetics in bacterial photosynthetic reaction centers: Conformational states in equilibrium pre-exist in the dark. In: Breton J., Vermeglio A., editors. The Photosynthetic Bacterial Reaction Center II. New York: Plenum Press; 1992. pp. 331–339. [Google Scholar]
- 12.Hienerwadel R., Nabedryk E., Breton J., Kreutz W., MSntele W. Time-resolved infrared and static FTIR studies of QA — QB electron transfer in Rhodopseudomonas viridis reaction centers. In: Breton J., editor. The Photosynthetic Bacterial Reaction Center II. New York: Plenum Press; 1992. pp. 163–172. [Google Scholar]
- 13.Dobrovolskii A.A., Filippov A.G., Goushcha A.O., Kapoustina M.T., Karataev V.N., Privalko A.V., Kharkyanen V.N. A new approach to experimental investigation of dynamic self-organization in reaction centers of purple bacteria. J. Biol. Phys. 1995;21:265–272. [Google Scholar]
- 14.Stowell M.H.B., McPhillips T.M., Rees D.C., Soltis S.M., Abresch E.C., Feher G. Light-induced structural changes in photosynthetic reaction center: Implication for mechanism of electron-proton transfer. Science. 1997;276:812. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
- 15.Goushcha A.O., Dobrovolsky A.A., Kapustina M.T., Privalko A.V., Kharkyanen V.N. New physical phenomenon of dynamical self-organization in molecular electron transfer systems. Phys. Lett. A. 1994;191:393–397. [Google Scholar]
- 16.Goushcha A.O., Kapustina M.T., Kharkyanen V.N. Nonlinear effect of dynamic selforganization in macromolecular systems caused by photocontrolled electron flux. J. Biol. Phys. 1994;19:273–283. [Google Scholar]
- 17.Goushcha A.O., Kapoustina M.T., Kharkyanen V.N., Holzwarth A.R. Nonlinear Dynamic Processes in an Ensemble of Photosynthetic Reaction Centers. Theory and Experiment. J. Phys. Chem. 1997;B101:7612–7619. [Google Scholar]
- 18.Christophorov, L.N., Goushcha, A.O., Kharkyanen, V.N. and Holzwarth, A.R.: Effects of structure-function organization in nonequilibrium macromolecular systems. Phys. Rev. E (1998).
- 19.Chinarov V.A., Gaididei Y., Kharkyanen V.N., Sit'ko S.P. Ion pores in biological membranes as self-organized bistable systems. Phys. Rev. 1992;A46:5232–5241. doi: 10.1103/physreva.46.5232. [DOI] [PubMed] [Google Scholar]
- 20.Christophorov L.N., Kharkyanen V.N., Sitko S.P. On the concept of nonequilibrium conformon (self-organization of a selected degree of freedom in biomolecular systems) J. Biol. Phys. 1992;18:191–202. [Google Scholar]
- 21.Christophorov L.N. Dichotomous noise with feedback and charge-conformational interaction. J. Biol. Phys. 1996;22:197–208. [Google Scholar]
- 22.Dobrovolskii A.A., Filippov A.G., Goushcha A.O., Privalko A.V., Kharkyanen V.N. Experimental evidence of dynamic self-organization in the electron transfer system (Example of reaction centers of purple bacteria) J. Biol. Phys. 1994;19:285–293. [Google Scholar]
- 23.Goushcha A.O., Kharkyanen V.N., Holzwarth A.R. Nonlinear light-induced properties of photosynthetic reaction centers under low intensity irradiation. J. Phys. Chem. 1997;B101:259–265. [Google Scholar]
- 24.Kleinfeld D., Okamura M.Y., Feher G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQB– and free energy and kinetic relations between QA– QB and QAQB–. Biochim. Biophys. Acta. 1984;766:126–140. doi: 10.1016/0005-2728(84)90224-x. [DOI] [PubMed] [Google Scholar]
- 25.Labahn A., Paddock M.L., McPherson P.H., Okamura M.Y., Feher G. Direct charge recombination from D+QAQB– to DQAQB in bacterial reaction centers from Rhodobacter sphaeroides. J. Phys. Chem. 1994;98:3417–3423. [Google Scholar]
- 26.Marcus R.A., Sutin N. Electron transfer in chemistry and biology. Biochim. Biophys. Acta. 1985;811:265–322. [Google Scholar]
- 27.Moser C.C., Keske J.M., Warncke K., Farid R.S., Dutton P.L. Nature of Biological Electron Transfer. Nature. 1992;355:796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
- 28.Christophorov L.N. Conformation-dependent charge transport: a new stochastic approach. Phys. Lett. A. 1995;205:14–17. [Google Scholar]
- 29.Kalman L., Maroti P. Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rb. sphaeroides. Biochemistry. 1997;36:15269–15276. doi: 10.1021/bi971882q. [DOI] [PubMed] [Google Scholar]