Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4353–4357. doi: 10.1073/pnas.81.14.4353

Inhibitors of CDP-choline synthesis, action potential calcium channels, and stimulus-secretion coupling.

A de Blas, M Adler, M Shih, P K Chiang, G L Cantoni, M Nirenberg
PMCID: PMC345587  PMID: 6087319

Abstract

The effects of putative transmethylation inhibitors were tested on stimulus-secretion coupling and neurotransmitter secretion at synapses between neuroblastoma X glioma hybrid cells and myotubes. 5'-Deoxy-5'-isobutylthio-3-deazaadenosine or 5'-deoxy-5'-isobutylthioadenosine inhibited CDP-choline synthesis catalyzed by cholinephosphate cytidylyltransferase (CTP:cholinephosphate cytidylyltransferase, EC 2.7.7.15) and thereby decreased the rate of phosphatidylcholine synthesis from CDP-choline, but did not affect the transmethylation pathway for phosphatidylcholine synthesis. These compounds also inhibited 45Ca2+ uptake by hybrid cells mediated by voltage-sensitive Ca2+ channels, acetylcholine secretion at synapses, and signal transduction through cell membranes mediated by myotube nicotinic acetylcholine receptors. In contrast, 3-deazaadenosine or adenosine inhibited the transmethylation pathway for phosphatidylcholine synthesis, but had no effect on Ca2+ action potentials, acetylcholine secretion, or signal transduction through cell membranes mediated by nicotinic acetylcholine receptors. These results show that the stimulus-secretion coupling and secretion reactions studied are not dependent on phospholipid methylation and suggest that the activity of action potential Ca2+ channels and the rate of neurotransmitter secretion are functionally coupled to the rate of phosphatidylcholine synthesis via the CDP-choline pathway.

Full text

PDF
4353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aksamit R. R., Falk W., Cantoni G. L. Inhibition of chemotaxis by S-3-deazaadenosylhomocysteine in a mouse macrophage cell line. J Biol Chem. 1982 Jan 25;257(2):621–625. [PubMed] [Google Scholar]
  2. Chiang P. K., Guranowski A., Segall J. E. Irreversible inhibition of S-adenosylhomocysteine hydrolase by nucleoside analogs. Arch Biochem Biophys. 1981 Mar;207(1):175–184. doi: 10.1016/0003-9861(81)90023-0. [DOI] [PubMed] [Google Scholar]
  3. Chiang P. K., Im Y. S., Cantoni G. L. Phospholipids biosynthesis by methylations and choline incorporation: effect of 3-deazaadenosine. Biochem Biophys Res Commun. 1980 May 14;94(1):174–181. doi: 10.1016/s0006-291x(80)80203-8. [DOI] [PubMed] [Google Scholar]
  4. Crews F. T., Morita Y., Hirata F., Axelrod J., Siraganian R. P. Phospholipid methylation affects immunoglobulin E-mediated histamine and arachidonic acid release in rat leukemia basophils. Biochem Biophys Res Commun. 1980 Mar 13;93(1):42–49. doi: 10.1016/s0006-291x(80)80243-9. [DOI] [PubMed] [Google Scholar]
  5. Domschke W., Keppler D., Bischoff E., Decker K. Cytosine nucleotides in liver. Hoppe Seylers Z Physiol Chem. 1971 Feb;352(2):275–279. doi: 10.1515/bchm2.1971.352.1.275. [DOI] [PubMed] [Google Scholar]
  6. Hirata F., Axelrod J., Crews F. T. Concanavalin A stimulates phospholipid methylation and phosphatidylserine decarboxylation in rat mast cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4813–4816. doi: 10.1073/pnas.76.10.4813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
  8. Hirata F., Strittmatter W. J., Axelrod J. beta-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A. 1979 Jan;76(1):368–372. doi: 10.1073/pnas.76.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirata F., Toyoshima S., Axelrod J., Waxdal M. J. Phospholipid methylation: a biochemical signal modulating lymphocyte mitogenesis. Proc Natl Acad Sci U S A. 1980 Feb;77(2):862–865. doi: 10.1073/pnas.77.2.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Im Y. S., Chiang P. K., Cantoni G. L. Guanidoacetate methyltransferase. Purification and molecular properties. J Biol Chem. 1979 Nov 10;254(21):11047–11050. [PubMed] [Google Scholar]
  11. Infante J. P. Rate-limiting steps in the cytidine pathway for the synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem J. 1977 Dec 1;167(3):847–849. doi: 10.1042/bj1670847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishizaka T., Hirata F., Ishizaka K., Axelrod J. Stimulation of phospholipid methylation, Ca2+ influx, and histamine release by bridging of IgE receptors on rat mast cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1903–1906. doi: 10.1073/pnas.77.4.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Mandel P., Edel-Harth S. Free nucleotides in the rat brain during post-natal development. J Neurochem. 1966 Jul;13(7):591–595. doi: 10.1111/j.1471-4159.1966.tb11955.x. [DOI] [PubMed] [Google Scholar]
  15. McGee R., Simpson P., Christian C., Mata M., Nelson P., Nirenberg M. Regulation of acetylcholine release from neuroblastoma x glioma hybrid cells. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1314–1318. doi: 10.1073/pnas.75.3.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minna J., Glazer D., Nirenberg M. Genetic dissection of neural properties using somatic cell hybrids. Nat New Biol. 1972 Feb 23;235(60):225–231. doi: 10.1038/newbio235225a0. [DOI] [PubMed] [Google Scholar]
  17. Nelson P. G., Christian C. N., Daniels M. P., Henkart M., Bullock P., Mullinax D., Nirenberg M. Formation of synapses between cells of a neuroblastoma X glioma hybrid clone and mouse myotubes. Brain Res. 1978 May 26;147(2):245–259. doi: 10.1016/0006-8993(78)90838-7. [DOI] [PubMed] [Google Scholar]
  18. Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruffolo R. R., Jr, Eisenbarth G. S., Thompson J. M., Nirenberg M. Synapse turnover: a mechanism for acquiring synaptic specificity. Proc Natl Acad Sci U S A. 1978 May;75(5):2281–2285. doi: 10.1073/pnas.75.5.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schanche J. S., Schanche T., Ueland P. M. Inhibition of phospholipid methyltransferase(s) from rat liver plasma membranes by analogues of S-adenosylhomocysteine. Mol Pharmacol. 1981 Nov;20(3):631–636. [PubMed] [Google Scholar]
  21. Schlessinger J., Axelrod D., Koppel D. E., Webb W. W., Elson E. L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science. 1977 Jan 21;195(4275):307–309. doi: 10.1126/science.556653. [DOI] [PubMed] [Google Scholar]
  22. Sleight R., Kent C. Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C. J Biol Chem. 1980 Nov 25;255(22):10644–10650. [PubMed] [Google Scholar]
  23. Vance D. E., de Kruijff B. The possible functional significance of phosphatidylethanolamine methylation. Nature. 1980 Nov 20;288(5788):277–279. doi: 10.1038/288277a0. [DOI] [PubMed] [Google Scholar]
  24. Yavin E. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Patterns of acetylcholine phosphocholine, and choline phosphoglycerides labeling from (methyl-14C)choline. J Biol Chem. 1976 Mar 10;251(5):1392–1397. [PubMed] [Google Scholar]
  25. Yavin E., Zutra A. Translocation and turnover of phospholipid analogs in plasma membrane-derived vesicles from cell cultures. Biochim Biophys Acta. 1979 Jun 2;553(3):424–437. doi: 10.1016/0005-2736(79)90298-0. [DOI] [PubMed] [Google Scholar]
  26. Zelinski T. A., Savard J. D., Man R. Y., Choy P. C. Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem. 1980 Dec 10;255(23):11423–11428. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES