Abstract
Oxidative damage caused by free radicals in vivo is believed to play an important role in the etiology of aging and age-associated degenerative diseases. The most direct evidence supporting this theory is the recent finding that the transgenic Drosophila that overexpress the antioxidant enzymes catalase and superoxide dismutase exhibit an increase in life span. Although the increase in life span in Drosophila by these enzymes is certainly important, the next logical direction is to demonstrate whether increased antioxidant protection occurs similarly in mammals. Several transgenic mouse models that overexpress antioxidant enzymes are currently available. However, one major shortcoming in using these transgenic mice is the difficulty of producing antioxidant overexpression in more than a few tissues. Despite the potential shortcomings of using transgenic mice, these animals provide a unique system in which individual components of a complex system, such as the antioxidant defense system, can be modulated and examined independently. Transgenic mice are therefore potentially powerful tools to study the role of various components of the antioxidant system in the aging process.
A parallel direction in the study of free radical roles in aging is to investigate the modulation of transcription factors by oxidative stress. Among these, the transcription factors, NF-κB and AP-1 are implicated in oxidative stress. The activities of these oxidative stress-response transcription factors are regulated by upstream signaling molecules, which involve a cascade of phosphorylation and dephosphorylation events leading to their activation. In this article, we review recent studies that use molecular approaches to investigate the biological role of oxidant stress. Each of these studies potentially provide new insights into the roles of free radicals and free radical damage in the aging process.
Key words: Oxidative stress, Transcription factors, Antioxidant defense, Transgenic mice, Overexpression and deletion of genes, Signal transduction
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
References
- 1.Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
- 2.Sohal R.S. The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res. 1993;5:3–17. doi: 10.1007/BF03324120. [DOI] [PubMed] [Google Scholar]
- 3.Nohl H. Involvement of free radicals in aging: a consequence or cause of senescence. Brit. Med. Bull. 1993;40:653–667. doi: 10.1093/oxfordjournals.bmb.a072638. [DOI] [PubMed] [Google Scholar]
- 4.Harman D. Free radical theory of aging: the free radical diseases. Age. 1984;7:111–131. doi: 10.1007/BF02431866. [DOI] [Google Scholar]
- 5.McCord J.M., Fridovich I. Superoxide dismutase: An enzymic function for erythrocuprein (neurocuprein) J. Biol., Chem. 1969;244:6049–6055. [PubMed] [Google Scholar]
- 6.Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979;62:527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- 7.Maiorino M., Chu F.F., Ursini F., Davies K., Dorshaw J.H., Esworthy R.S. Phospholipid hydroperoxide glutathione peroxidase is the 18 kDa selenoprotein expressed in human tumor cell lines. J. Biol. Chem. 1991;255:7728–7732. [PubMed] [Google Scholar]
- 8.Elroy-Stein O., Bernstein Y., Groner Y. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 1986;5:615–622. doi: 10.1002/j.1460-2075.1986.tb04255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Huang, T.T., Carlson, E.J., Leadon, S.A., and Epstein, C.J.: Relationship of resistance to oxygen free radicals to CuZn-superoxide dismutase activity in transgenic, transfected, and trisomic ceils. FASEB J., 6: 03-910, 1992. [DOI] [PubMed]
- 10.Krall J., Bagley A.C., Mullenbach G.T., Hallewell R.A., Lynch R.E. Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J. Biol. Chem. 1988;263:1910–1914. [PubMed] [Google Scholar]
- 11.Kelner M.J., Bagnell R., Montoya M., Estes L., Uglik S.F., Cerutti P. Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Rad. Biol. Med. 1995;18:497–506. doi: 10.1016/0891-5849(94)00167-I. [DOI] [PubMed] [Google Scholar]
- 12.Negita M., Hayashi S., Yokoyama I., Emi N., Nagasaka T., Takagi H. Human superoxide dismutase cDNA transfection and its in vitro effect on cold preservation. Biophys. Res. Biochem. Comm. 1996;218:653–657. doi: 10.1006/bbrc.1996.0117. [DOI] [PubMed] [Google Scholar]
- 13.Elroy-Stein O., Groner Y. Impaired neurotransmitter uptake in PC-12 cells overexpressing human CuZn-superoxide dismutase-implication for gene dosage effects in Down Syndrome. Cell. 1988;52:259–267. doi: 10.1016/0092-8674(88)90515-6. [DOI] [PubMed] [Google Scholar]
- 14.Norris K.H., Hornsby P.J. Cytotoxic effects of expression of human superoxide dismutase in bovine adrenocortical cells. Mutat. Res. 1990;237:95–106. doi: 10.1016/0921-8734(90)90015-j. [DOI] [PubMed] [Google Scholar]
- 15.Amstad P., Peskin A., Shah G., Mirault M.-E., Moret R., Zbinden I., Cerutti P. The balance between Cu/Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry. 1991;30:9305–9313. doi: 10.1021/bi00102a024. [DOI] [PubMed] [Google Scholar]
- 16.Erzurum S.C., Lemarchand P., Rosenfeld M.A., Yoo J.-H., Crystal R.G. Protection of human endothelial cells from oxidant injury by adenovirus-mediated transfer of the human catalase cDNA. Nucleic Acids Res. 1993;21:1607–1612. doi: 10.1093/nar/21.7.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Lindau-Shepard B.A., Shaffer J.B. Expression of human catalase in acatalasemic murine SV-B2 cells confers protection from oxidative damage. Free Rad. Biol. Med. 1993;15:581–588. doi: 10.1016/0891-5849(93)90160-V. [DOI] [PubMed] [Google Scholar]
- 18.Wong G.H.W., Elwell J.H., Oberley L.W., Goeddel D.V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989;58:923–931. doi: 10.1016/0092-8674(89)90944-6. [DOI] [PubMed] [Google Scholar]
- 19.Hirose K., Longo D.L., Oppenheim J.J., Matsushima K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J. 1993;7:361–368. doi: 10.1096/fasebj.7.2.8440412. [DOI] [PubMed] [Google Scholar]
- 20.Suresh A., Tung F., Moreb J., Zucali J.R. Role of manganese superoxide dismutase in radio-protection using gene transfer studies. Cancer Gene Therapy. 1994;1:85–90. [PubMed] [Google Scholar]
- 21.StClair D.K., Oberley T.D., Ho Y.-S. Overproduction of human Mn-superoxide dismutase modulates paraquat-mediated toxicity in mammalian cells. FEBS Lett. 1991;293:199–203. doi: 10.1016/0014-5793(91)81186-C. [DOI] [PubMed] [Google Scholar]
- 22.Warner B., Papes R., Heile M., Spitz D., Wispe J. Expression of human Mn SOD in Chinese hamster ovary cells confers protection from oxidant injury. Am. J. Physiol. 1993;264:L598–L605. doi: 10.1152/ajplung.1993.264.6.L598. [DOI] [PubMed] [Google Scholar]
- 23.Lindau-Shepard B., Shaffer J.B., Del Vecchio P.J. Overexpression of manganous superoxide dismutase (MnSOD) in pulmonary endothelial cells confers resistance to hyperoxia. J. Cell. Physiol. 1994;161:237–242. doi: 10.1002/jcp.1041610207. [DOI] [PubMed] [Google Scholar]
- 24.St. Clair D.K., Wan X.S., Oberley T.D., Muse K.E., St. Clair W.H. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol. Carcinog. 1992;6:238–242. doi: 10.1002/mc.2940060404. [DOI] [PubMed] [Google Scholar]
- 25.St. Clair D.K., Oberley T.D., Muse K.E., St. Clair W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic. Biol. Med. 1994;16:275–282. doi: 10.1016/0891-5849(94)90153-8. [DOI] [PubMed] [Google Scholar]
- 26.Church S.L., Grant J.W., Ridnour L.A., Oberley L.W., Swanson P.E., Meltzer P.S., Trent J.M. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. USA. 1993;90:3113–3117. doi: 10.1073/pnas.90.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Li J.J., Oberley L.W., St. Clair D.K., Ridnour L.A., Oberley T.D. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene. 1995;10:1989–2000. [PubMed] [Google Scholar]
- 28.Mirault, M.E., Tremblay, A., Beaudoin, N., and Tremblay, M.: Overexpression of seleno-gluthathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem., 266: 20752–20760, 1991. [PubMed]
- 29.Taylor S.D., Davenport L.D., Speranza M.J., Mullenbach G.T., Lynch R.E. Glutathione peroxidase protects cultured mammalian cells from the toxicity of adriamycin and paraquat. Arch. Biochem. Biophys. 1993;305:600–605. doi: 10.1006/abbi.1993.1467. [DOI] [PubMed] [Google Scholar]
- 30.Seto N.O., Hayashi S., Tener G.M. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl. Acad. Sci. USA. 1990;87:4270–4274. doi: 10.1073/pnas.87.11.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Orr W.C., Sohal R.S. Effects of Cu-Zn super-oxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 1993;301:4–40. doi: 10.1006/abbi.1993.1111. [DOI] [PubMed] [Google Scholar]
- 32.Reveillaud I., Niedzwiecki A., Bensch K.G., Fleming J.E. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol. Biol. Cell. 1991;11:632–640. doi: 10.1128/mcb.11.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Durusoy M., Diril N., Bozcuk A. Age-related activity of catalase in different genotypes of Drosophila melanogaster. Exp. Gerontol. 1995;30:77–86. doi: 10.1016/0531-5565(94)00033-Y. [DOI] [PubMed] [Google Scholar]
- 34.Epstein C.J., Avraham K.B., Lovett M., Smith S., Elroy-Stein O., Rotman G., Bry C., Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in down syndrome. Proc. Natl. Acad. Sci. USA. 1987;84:8044–8048. doi: 10.1073/pnas.84.22.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Przedborski S., Jackson-Lewis V., Kostic V., Carlson E., Epstein C.J., Cadet J.L. Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc-superoxide dismutase transgenic mice. J. Neurochem. 1992;58:1760–1767. doi: 10.1111/j.1471-4159.1992.tb10051.x. [DOI] [PubMed] [Google Scholar]
- 36.White C.W., Avraham K.B., Shanley P.F., Groner Y. Transgenic mice with expression of elevated levels of copper-zinc superoxide dismutase in the lungs are resistant to pulmonary oxygen toxicity. J. Clin. Invest. 1991;87:2162–2168. doi: 10.1172/JCI115249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Kinouchi, H., Epstein, C.J., Mizui, T., Carlson, E., Chen, S.F., and Chan, P.H.: Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 88: 11158–11162, 1991. [DOI] [PMC free article] [PubMed]
- 38.Chan P.H., Yang G.Y., Chen S.F., Carlson E., Epstein C.J. Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann. Neurol. 1991;29:482–486. doi: 10.1002/ana.410290506. [DOI] [PubMed] [Google Scholar]
- 39.Chart P.H., Chu L., Chen S.F., Carlson E.J., Epstein C.J. Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke. 1990;21:80–82. [PubMed] [Google Scholar]
- 40.Przedborski S., Kostic V., Jackson-Lewis V., Naini A.B., Simonetti S., Fahn S., Carlson E., Epstein C.J., Cadet J.L. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyddine-induced neurotoxicity. J. Neurosci. 1992;12:1658–1667. doi: 10.1523/JNEUROSCI.12-05-01658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Avraham K.B., Schickler M., Sapoznikov D., Yarom R., Groner Y. Down’s syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase. Cell. 1988;54:823–829. doi: 10.1016/S0092-8674(88)91153-1. [DOI] [PubMed] [Google Scholar]
- 42.Avraham K.B., Sugarman H., Rotshenker S., Groner Y. Down’s syndrome: morphological remodeling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J. Neurocytol. 1991;20:206–215. doi: 10.1007/BF01186993. [DOI] [PubMed] [Google Scholar]
- 43.Schickler M., Knobler H., Avraham K.B., Elroy-Stein O., Groner Y. Diminished serotonin uptake in platelets of transgenic mice with increased Cu/Zn-superoxide dismutase activity. EMBO J. 1989;8:1385–1392. doi: 10.1002/j.1460-2075.1989.tb03519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Minc-Golomb D., Knobler H., Groner Y. Gene dosage of CuZnSOD and Down’s syndrome: diminished prostaglandin synthesis in human trisomy 21, transfected cells and transgenic mice. EMBO J. 1991;10:119–2124. doi: 10.1002/j.1460-2075.1991.tb07745.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Nabarra B., Casanova M., Paris D., Nicole A., Toyama K., Sinet P., Ceballos I., London J. Transgenic mice overexpressing the human CuZnSOD gene: ultrastructural studies of a premature thymic involution model of Down’s Syndrome (Trisomy 21) Laboratory Investigation. 1996;74:617–626. [PubMed] [Google Scholar]
- 46.Mirochnitchenko O., Inouye M. Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage functions. J. Immunol. 1996;156:1578–1586. [PubMed] [Google Scholar]
- 47.Wispe, J.R., Warner, B.B., Clark, J.C., Dey, C.R., Neuman, J., Glasser, S.W., Crapo, J.D., Chang, L.Y., and Whitsett, J.A.: Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen toxicity. J. Biol. Chem., 267: 23937–23941, 1992. [PubMed]
- 48.Ho Y.S. Transgenic models for the study of lung biology and disease. Am. J. Physiol. 1994;266:L319–L353. doi: 10.1152/ajplung.1994.266.4.L319. [DOI] [PubMed] [Google Scholar]
- 49.Mirault M., Tremblay A., Furling D., Trepanier G., Dugre F., Puymirat J., Pothier F. Transgenic glutathione peroxidase mouse models for neuroprotection studies. Ann. N. Y. Acad. Sci. 1994;738:104–115. doi: 10.1111/j.1749-6632.1994.tb21795.x. [DOI] [PubMed] [Google Scholar]
- 50.Li Y., Huang T., Carlson E., Yoshimura M., Berger C., Chan P., Wallace D., Epstein C. Dilated cardiomopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 1995;11:376–381. doi: 10.1038/ng1295-376. [DOI] [PubMed] [Google Scholar]
- 51.Lebovitz R. M., Zhang H., Vogel H., Cartwright J., Dionne L., Lu N., Huang S., Matzuk M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA. 1996;93:9782–9787. doi: 10.1073/pnas.93.18.9782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Meyer M., Schreck R., Baeuerle P.A. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993;12:2005–2015. doi: 10.1002/j.1460-2075.1993.tb05850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Dalton T., Palmer R.D., Andrews G.K. Transcriptional induction of the mouse metallothionein-1 gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acid Res. 1994;22:5016–5023. doi: 10.1093/nar/22.23.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Hellmund D. Heat Shock: Response of Eucaryotic Cells. New York: Springer-Verlag; 1994. [Google Scholar]
- 55.Oh S. H., Deagen J.T., Whanger P.D., Werving P.H. Biological function of metallothionin V. Its induction in rats by various stresses. Am. J. Physiol. 1978;234:E282–E305. doi: 10.1152/ajpendo.1978.234.3.E282. [DOI] [PubMed] [Google Scholar]
- 56.Koj A. Acute Phase Reactants. In: Allison A.C., editor. Structure and Function of Plasma Proteins. New York: Plenum Publishing Corp.; 1985. pp. 73–125. [Google Scholar]
- 57.Baeuerle P.A., Baltimore D. IκB: A specific inhibitor of the NF-kappa B transcription factor. Science. 1988;242:540–546. doi: 10.1126/science.3140380. [DOI] [PubMed] [Google Scholar]
- 58.Carter K.C., Post D.G., Papaconstantinou J. Differential expression of the mouse alpha 1-acid glycoprotein genes during inflammation. Biochem. Biophys. Acta. 1991;1089:197–205. doi: 10.1016/0167-4781(91)90008-a. [DOI] [PubMed] [Google Scholar]
- 59.Liu, A., Lin, Y.C., Chio, H.S., Sarhage, F., and Li, B.: Attenuated induction of heat shock gene expression in aging fibroblast. J. Biol. Chem., 264: 12037–12045, 1989. [PubMed]
- 60.Post D.J., Carter K.C., Papaconstantinou J. The effect of aging on constitutive mRNA levels and lipopolysaccharide inducibility of acute phase genes. N. Y. Acad. Sci. 1991;621:66–77. [PubMed] [Google Scholar]
- 61.Heydari A. R., Wu B., Takahashi R., Strong R., Richardson A. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell. Biol. 1993;13:2909–2918. doi: 10.1128/mcb.13.5.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Pahlavani M. A., Denny M., Moore S. A., Weindruch R., Richardson A. The expression of heat shock protein 70 decreases with age in ymphocytes from rats and rhesus monkeys. Exp. Cell Res. 1995;218:310–318. doi: 10.1006/excr.1995.1160. [DOI] [PubMed] [Google Scholar]
- 63.Storz G., Tartaglia L.A., Farr S.B., Ames B.N. Bacterial defenses against oxidative stress. Trends Genet. 1990;6:363–368. doi: 10.1016/0168-9525(90)90278-E. [DOI] [PubMed] [Google Scholar]
- 64.Demple B. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet. 1991;25:315–337. doi: 10.1146/annurev.ge.25.120191.001531. [DOI] [PubMed] [Google Scholar]
- 65.Schreck R., Meier B., Mannel D., Droge W., Baeuerle P. A. Dithiocarbamates as potent inhibitors of NF-κB activation in intact cells. J. Exp. Med. 1992;175:1181–1194. doi: 10.1084/jem.175.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J. 1991;10:2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Baeuerle P.A., Baltimore D. The physiology of NF-kB transcription factor. In: Cohen P., Foulkes J.G., editors. Molecular aspects of cellular regulation, hormonal control regulation of gene transcripton. Amsterdam: Elsevier Science Publishers B.V.; 1991. pp. 409–432. [Google Scholar]
- 68.Baeuerle P.A. The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochem. Biophys. Acta. 1991;1072:63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
- 69.Baeuerle P.A. The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochem. Biophys. Acta. 1991;1072:63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
- 70.Nose K., Shibanuma M., Kikuchi K., Kageyama H., Sakiyama S., Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 1991;201:99–106. doi: 10.1111/j.1432-1033.1991.tb16261.x. [DOI] [PubMed] [Google Scholar]
- 71.Amstad P.A., Krupitza G., Cerutti P.A. Mechanisms of c-fos induction by active oxygen. Cancer Res. 1992;52:3952–3960. [PubMed] [Google Scholar]
- 72.Schreck R., Albermann K., Baeuerle P.A. Nuclear factor κB: an oxidative stress-response transcription factor of eukaryotic cells. Free Rad. Res. Commun. 1992;17:221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
- 73.Stankova J., Pleszczynski M. Leukotriene B4 stimulates c-fos and c-jun transcription and AP-1 binding activity in human monocytes. Biochem. J. 1992;282:625–629. doi: 10.1042/bj2820625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Datta R., Hallahan D.E., Kharbanda S.M., Rubin E., Sherman M.L., Huberman E., Weichselbaum R.R., Kufe D.W. Involvement of reactive oxygen intermediates in the indiction of c-fos gene transcription by ionizing radiation. Biochemistry. 1992;31:8300–8306. doi: 10.1021/bi00150a025. [DOI] [PubMed] [Google Scholar]
- 75.Munoz E., Zubiaga A.M., Huang C., Huber B.T. IL-1 induces protein tyrosine phosphorylation in T cells. Eur. J. Immunol. 1992;22:1391–1396. doi: 10.1002/eji.1830220610. [DOI] [PubMed] [Google Scholar]
- 76.Devary Y., Gottlieb R.A., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992;71:1081–1092. doi: 10.1016/S0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
- 77.Tyrrell R.M. Oxidative stress. In: Sies H., editor. Oxidative stress, Oxidants and antioxidants. London: Academic Press; 1991. pp. 57–84. [Google Scholar]
- 78.Abate C., Patel L., Rauscher F.J., Curran T. Redox regulation of fos and jun DNA binding activity in vitro. Science. 1990;249:1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
- 79.Frame M.G., Wilkie N.M., Darling A.J., Chudleigh A., Pintzas A., Lang J.C., Gillespie D.A. Regulation of AP-1 DNA complex formation in vitro. Oncogene. 1991;6:205–209. [PubMed] [Google Scholar]
- 80.Hunter T., Karin M. The regulation of transcription by phosphorylation. Cell. 1992;70:375–387. doi: 10.1016/0092-8674(92)90162-6. [DOI] [PubMed] [Google Scholar]
- 81.Pelech S.L., Sanghera J.S. Mitogen-activated protein kinases: Versatile transducers for cell signaling. Trends in Biochem. Sci. 1992;17:233–238. doi: 10.1016/s0968-0004(00)80005-5. [DOI] [PubMed] [Google Scholar]
- 82.Papaconstantinou J. Unifying model of the programmed and stochastic theories of aging. Stress response genes, signal transduction-redox pathways and aging. Ann. New York Acad. Sci. 1994;719:195–211. doi: 10.1111/j.1749-6632.1994.tb56829.x. [DOI] [PubMed] [Google Scholar]
- 83.Herrlich P., Ponta H., Rahmsdorf H.J. DNA damage inducing gene expression: Signal transduction and relation to growth factor signaling. Rev. Physiol. Biochem. Pharmacol. 1992;119:187–223. doi: 10.1007/3540551921_7. [DOI] [PubMed] [Google Scholar]
- 84.Woodgette J.R. Fos and Jun: Two into one will go. Seminar in Cancer Biology. 1990;4:389–397. [PubMed] [Google Scholar]
- 85.Angel P., Karin M. The role of Jun, Fos, and the AP-1 complex in cell proliferation and transformation. Biochem. Biophys. Acta. 1991;1072:129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
- 86.Davis R.J. Transcriptional Regulation by MAP kinases. Mol. Reprod. Dev. 1995;42:459–567. doi: 10.1002/mrd.1080420414. [DOI] [PubMed] [Google Scholar]
- 87.Conrad A. C., Steck P.A. Protein tyrosine in signal transduction. The Cancer Bulletin. 1995;47:125–133. [Google Scholar]
- 88.Bernstein L.R., Ferris D.K., Colburn N.H., Sobel M.E. A family of mitogen-activated protein kinase-related proteins interacts in vivo with activator protein-1 transcription factor. J. Biol. Chem. 1994;269:9401–411. [PubMed] [Google Scholar]
- 89.Seger R., Krebs E.C. The MAPK signaling cascade. FASEB J. 1995;9:726–732. [PubMed] [Google Scholar]
- 90.Su B., Jacinto E., Hibi M., Kallunki T., Karin M., Neriah Y. JNK is involves in signal integration during costimulation of T lymphocytes. Cell. 1994;77:726–735. doi: 10.1016/0092-8674(94)90056-6. [DOI] [PubMed] [Google Scholar]
- 91.Kyriakis J. M., Banerjee P., Nikolakaki E. The stress-activated protein kinase subfamily of c-jun kinases. Nature. 1994;369:156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
- 92.D’erijard B., Hibi M., Wu I.H. JNK1: A protein kinase stimulated by UV light and Ha-Ras taht binds and phosphorylates the c-jun activation domain. Cell. 1994;76:1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
- 93.Sanchez I., Hughes R., Mayer B. SAP/ERK kinase-1 (SEK1) defines the SAP pathway regulating c-Jun N-terminal phosphorylation. Nature. 1994;372:794–798. doi: 10.1038/372794a0. [DOI] [PubMed] [Google Scholar]
- 94.Yah M., Dai T., Dek J., Kyriakis J., Zon L., Woodgett J., Templeton D. MEKK1 activates the stress activated protein kinase (SAPK) in vivo, not MAP kinase, via direct phosphorylation of the SAPK activator SEK1. Nature. 1994;372:798–800. doi: 10.1038/372798a0. [DOI] [PubMed] [Google Scholar]
- 95.Pombo, C.M., Bonventre, J.V., Woodgett, J.R., Kyriakis, J. M., and Force, T.: The stress-activated protein kinases (SAPKs) are major c-Jun amino terminal kinases actiated by ischemia and reperfusion. J. Biol. Chem., 269: 26546–26550, 1994. [PubMed]
- 96.Pulverer B., Kyriakis J., Avruch J., Nikolakaki H., Woodgett J.R. Phosphorylation of c-Jun by MAP kinases. Nature. 1991;353:670–674. doi: 10.1038/353670a0. [DOI] [PubMed] [Google Scholar]
- 97.Pulverer B., Hughes K., Franklin C., Kraft A., Leevers S., Woodgett J. Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase in U937 leukaemic cells. Oncogene. 1993;8:407–415. [PubMed] [Google Scholar]
- 98.Devary Y., Gottlieb R., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992;71:1081–1091. doi: 10.1016/S0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
- 99.De, S.K., McMaster, M.T., and Andrews, G.K.: Endotoxin induction of murine metallothionein gene expression. J. Biol. Chem., 265: 15267–15274, 1990. [PubMed]
- 100.Durnam D.M., Hoffman J.S., Quaife C.J., Benditt E.P., Chen H.Y., Brinster R.L., Palmiter R.D. MT-III, a brain specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. USA. 1984;81:1053–1056. doi: 10.1073/pnas.81.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Abel J., de Ruiter N. Inhibition of hydroxylradical generated DNA degradation by metallothionein. Toxicol. Lett. 1989;47:191–196. doi: 10.1016/0378-4274(89)90075-1. [DOI] [PubMed] [Google Scholar]
- 102.Thornalley P.J., Vasak M. Possible role of metallothionein in protection against radiation-induced oxidative stress. Biochem. Biophys. Acta. 1985;827:36–44. doi: 10.1016/0167-4838(85)90098-6. [DOI] [PubMed] [Google Scholar]
- 103.Rushmore, T.H., Morton, M.R., and Pickett, C.B.: The antioxidant responsive element. Activation by oxidative stress and identification of DNA consensus sequence required for functional activity. J. Biol. Chem., 266: 11632–11639, 1991. [PubMed]
- 104.Nguyen, T, Rushmore, T.H., and Pickett, C.B.: Transcriptional regulation of a rat liver glutathione-S-transferase Ya subunit gene. J. Biol. Chem., 269: 13656–13662, 1994. [PubMed]
- 105.Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. The transcription factor MTF-I is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 1993;12:1355–1362. doi: 10.1002/j.1460-2075.1993.tb05780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Palmiter R.D. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor MTF-I. Proc. Natl. Acad. Sci. USA. 1994;91:1219–1223. doi: 10.1073/pnas.91.4.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]