Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 1999 Jun;25(2-3):245–262. doi: 10.1023/A:1005180027451

Molecular Dynamics Investigation of Bond Ordering of Unsaturated Lipids in Monolayers

Alexander L Rabinovich 1, Pauli O Ripatti 2, Nikolay K Balabaev 2
PMCID: PMC3455960  PMID: 23345701

Abstract

Molecular dynamics simulations of three model lipid monolayers of 2,3-diacyl-D-glycerolipids, that contained stearoyl (18:0) in the position 3 and oleoyl (18:ω9cis), linoleoyl (18:2ω6cis), or linolenoyl (18:3ω3cis) in the position 2, have been carried out. The simulation systems consisted of 24 lipid molecules arranged in a rectangular simulation cell, with periodic boundary conditions in the surface plane. 1 nanosecond simulations were performed at T = 295 K. C-C and C-H bond order parameter profiles and the bond orientation distributions about the monolayer normal have been calculated. The relation of the distributions to the order parameters was analyzed in terms of maxima and widths of the distributions. The cis double bond order parameter is found to be higher than those of adjacent single C-C bonds. The widths of the two distributions of C-H bonds of the cis double bond segment in di- and triunsaturated molecules are much smaller than that obtained for methylene group located between the double bonds. The bond orientation distribution function widths depend on both the segment location in the chain and the segment chemical structure.

Keywords: Order parameter, Orientation distribution functions, Unsaturatedlipids, Monolayers, Biomembranes, Molecular dynamics simulation

Full Text

The Full Text of this article is available as a PDF (203.1 KB).

Contributor Information

Alexander L. Rabinovich, Email: rabinov@shungit.karelia.su

Pauli O. Ripatti, Email: balabaev@impb.serpukhov.su

References

  • 1.Fenske D.B., Monck M.A., Hope M.J., Cullis P.R. The functional roles of lipids in biological membranes. Biomembranes. 1995;1:1–28. [Google Scholar]
  • 2.Bloom M., Evans E., Mouritsen O.G. Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective. Quart. Rev. Biophys. 1991;24:293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  • 3.Lipowsky R., Sackmann E., editors. Membranes: Their structure and conformations. Amsterdam: Elsevier; 1994. [Google Scholar]
  • 4.Rilfors L., Wieslander A., Lindblom G. Regulation and physicochemical properties of the polar lipids in Acholeplasma laidlawii. In: Rottem S., Kahane I., editors. Subcellular Biochemistry. New York: Plenum Press; 1993. pp. 109–166. [DOI] [PubMed] [Google Scholar]
  • 5.Seelig J. Deuterium magnetic resonance: theory and applications to lipid membranes. Quart. Rev. Biophys. 1977;10:353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  • 6.Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Quart. Rev. Biophys. 1980;13:19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  • 7.Davis J.H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim. Biophys. Acta. 1983;737:117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
  • 8.Smith I.C.P. Conformational and motional properties of lipids in biological membranes as determined by deuterium magnetic resonance. In: Kates M., Manson L.A., editors. Biomembranes. New York: Plenum Press; 1984. pp. 133–168. [Google Scholar]
  • 9.Ghosh R. 31P and 2H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine. Biochemistry. 1988;27:7750–7758. doi: 10.1021/bi00420a025. [DOI] [PubMed] [Google Scholar]
  • 10.Sankaram M.B., Thompson T.E. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H NMR study. Biochemistry. 1990;29:10676–10684. doi: 10.1021/bi00499a015. [DOI] [PubMed] [Google Scholar]
  • 11.Thurmond R.L., Lindblom G., Brown M.F. Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry. 1993;32:5394–5410. doi: 10.1021/bi00071a015. [DOI] [PubMed] [Google Scholar]
  • 12.Trouard T.P., Alam T.M., Brown M.F. Angular dependence of deuterium spin-lattice relaxation rates of macroscopically oriented dilauroylphosphatidylcholine in the liquidcrystalline state. J. Chem. Phys. 1994;101:5229–5261. [Google Scholar]
  • 13.Tuchtenhagen J., Ziegler W., Blume A. Acyl chain conformational ordering in liquidcrystalline bilayers: Comparative FT-IR and 2H-NMR studies of phospholipids differing in head-group structure and chain length. Eur. Biophys. 1994;23:323–335. [Google Scholar]
  • 14.Thurmond R.L., Niemi A.R., Lindblom G., Wieslander A., Rilfors L. Membrane thickness and molecular ordering in Acholeplasma laidlawii Strain A studied by 2H NMR spectroscopy. Biochemistry. 1994;33:13178–13188. doi: 10.1021/bi00249a004. [DOI] [PubMed] [Google Scholar]
  • 15.Lu D., Vavasour I., Morrow M.R. Smoothed acyl chain orientational order parameter profiles in dimiristoylphosphatidylcholine-distearoylphosphatidylcholine mixtures: a 2H-NMR study. Biophys. J. 1995;68:574–583. doi: 10.1016/S0006-3495(95)80219-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Douliez J.-P., Leonard A., Dufourc E.J. Restatement of order parameters in biomembranes: Calculation of C-C bond order parameters from C-D quadrupolar splitting. Biophys. J. 1995;68:1727–1739. doi: 10.1016/S0006-3495(95)80350-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lafleur M., Bloom M., Eikenberry E.F., Gruner S.M., Han Y., Cullis P.R. Correlation between lipid plane curvature and lipid chain order. Biophys. J. 1996;70:2747–2757. doi: 10.1016/S0006-3495(96)79844-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Seelig J., Waespe-Sarcevic N. Molecular order in cis and trans unsaturated phospholipid bilayers. Biochemistry. 1978;17:3310–3315. doi: 10.1021/bi00609a021. [DOI] [PubMed] [Google Scholar]
  • 19.Seelig A., Seelig J. Effect of a single cis double bond on the structure of a phospholipid bilayer. Biochemistry. 1977;16:45–50. doi: 10.1021/bi00620a008. [DOI] [PubMed] [Google Scholar]
  • 20.Gally H.U., Pluschke G., Overath P., Seelig J. Structure of E. coli membranes: Phospholipid conformation in model membranes and cells as studied by deuterium magnetic resonance. Biochemistry. 1979;18:5605–5610. doi: 10.1021/bi00592a013. [DOI] [PubMed] [Google Scholar]
  • 21.Rance M., Jeffrey K.R., Tulloch A.P., Butler K.W., Smith I.C.P. Orientational order of unsaturated lipids in the membranes of Acholeplasma laidlawii as observed by 2H-NMR. Biochim. Biophys. Acta. 1980;600:245–262. doi: 10.1016/0005-2736(80)90430-7. [DOI] [PubMed] [Google Scholar]
  • 22.Baenziger J.E., Jarrell H.C., Hill R.J., Smith I.C.P. Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: Effects of two cis-unsaturated double bonds. Biochemistry. 1991;30:894–903. doi: 10.1021/bi00218a003. [DOI] [PubMed] [Google Scholar]
  • 23.Rajamoorthi K., Brown M.F. Bilayers of arachidonic acid containing phospholipids studied by 2H and 31P NMR spectroscopy. Biochemistry. 1991;30:4204–4212. doi: 10.1021/bi00231a015. [DOI] [PubMed] [Google Scholar]
  • 24.Dratz E.A., Deese A.J. The role of docosahexaenoic acid in biological membranes: examples from photoreceptors and model membrane bilayers. In: Simopoulous A.P., Kiefer R.R., Martin R.E., editors. Health effects of polyunsaturated fatty acids in seafoods. New York: Academic Press; 1986. pp. 319–351. [Google Scholar]
  • 25.Salmon A., Dodd S.W., Williams G.D., Beach J.M., Brown M.F. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J. Am. Chem. Soc. 1987;109:2600–2609. [Google Scholar]
  • 26.Dill K.A., Naghizadeh J., Marqusee J.A. Chain molecules at high densities at interfaces. Ann. Rev. Phys. Chem. 1988;39:425–461. doi: 10.1146/annurev.pc.39.100188.002233. [DOI] [PubMed] [Google Scholar]
  • 27.Ferrarini A., Nordio P.L., Moro G.J., Crepeau R.H., Freed J.H. A theoretical model of phospholipid dynamics in membranes. J. Chem. Phys. 1989;91:5707–5721. [Google Scholar]
  • 28.Xiang T.-X., Anderson B.D. Molecular distributions in interphases: statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys. J. 1994;66:561–573. doi: 10.1016/s0006-3495(94)80833-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ben-Shaul A., Gelbart W.M. Statistical thermodynamics of amphiphile self-assembly: structure and phase transitions in micellar solutions. In: Gelbart W.M., Ben-Shaul A., Roux D., editors. Micelles, monolayers, microemulsions and membranes. New York: Springer; 1994. pp. 1–104. [Google Scholar]
  • 30.Fattal D.R., Ben-Shaul A. Mean-field calculations of chain packing and conformational statistics in lipid bilayers: Comparison with experiments and molecular dynamics studies. Biophys. J. 1994;67:983–995. [PMC free article] [PubMed] [Google Scholar]
  • 31.van Gunsteren W.F., Berendsen H.J.C. Computer simulation of molecular dynamics methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 1990;29:992–1023. [Google Scholar]
  • 32.Pastor R.W., Venable R.M. Molecular and stochastic dynamics simulation of lipid membranes. In: van Gunsteren W.F., Weiner P.K., Wilkinson A.J., editors. Computer simulation of biomolecular systems: Theoretical and experimental applications. Leiden: Escom; 1993. pp. 443–463. [Google Scholar]
  • 33.Stouch T.R. Lipid membrane structure and dynamics studied by all-atom molecular dynamics simulations of hydrated phospholipid bilayers. Molecular Simulation. 1993;10:335–362. [Google Scholar]
  • 34.Pastor R.W. Molecular dynamics and Monte Carlo simulations of lipid bilayers. Current Opinion Struct. Biol. 1994;4:486–492. [Google Scholar]
  • 35.Stouch T.R., Alper H.E., Bassolino D. Supercomputing studies of biomembranes. Supercomp. Appl. & High Perform. Computing. 1994;8:6–23. [Google Scholar]
  • 36.Essex J.W., Hann M.M., Richards W.G. Molecular dynamics simulation of a hydrated phospholipid bilayer. Phil. Trans. R. Soc. Lond. B. 1994;344:239–260. doi: 10.1098/rstb.1994.0064. [DOI] [PubMed] [Google Scholar]
  • 37.Egberts E., Marrink S.-J., Berendsen H.J.C. Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 1994;22:423–436. doi: 10.1007/BF00180163. [DOI] [PubMed] [Google Scholar]
  • 38.Peters G.H., Toxvaerd S., Svendsen A., Olsen O.H. Modeling of complex biological systems. I. Molecular dynamics studies of diglyceride monolayers. J. Chem. Phys. 1994;100:5996–6010. [Google Scholar]
  • 39.Chiu S.-W., Clark M., Balaji V., Subramaniam S., Scott H.L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: A fluid phase lipid bilayer membrane. Biophys. J. 1995;69:1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Tu K., Tobias D.J., Blasie J.K., Klein M.L. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. Biophys. J. 1996;70:595–608. doi: 10.1016/S0006-3495(96)79623-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lopez Cascales J.J., Torre J. d. l., Marrink S.J., Berendsen H.J.C. Molecular dynamics simulation of a charged biological membrane. J. Chem. Phys. 1996;104:2713–2720. [Google Scholar]
  • 42.Pastor R.W., Feller S.E. Time scales of lipid dynamics and molecular dynamics. In: Merz K.M. Jr., Roux B., editors. Biological membranes. A molecular perspective from computation and experiment. Boston-Basel-Berlin: Birkhauser; 1996. pp. 3–29. [Google Scholar]
  • 43.Levine Y.K., Kolinski A., Skolnick J. A lattice dynamics study of a Langmuir monolayer of monounsaturated fatty acids. J. Chem. Phys. 1993;98:7581–7587. [Google Scholar]
  • 44.Pearce L.L., Harvey S.C. Langevin dynamics studies of unsaturated phospholipids in a membrane environment. Biophys. J. 1993;65:1084–1092. doi: 10.1016/S0006-3495(93)81143-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Heller H., Schaefer M., Schulten K. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J. Phys. Chem. 1993;97:8343–8360. [Google Scholar]
  • 46.van der Heide U.A., Levine Y.K. A computer simulation study of the relation between lipid and probe behaviour in bilayer systems. Biochim. Biophys. Acta. 1994;1195:1–10. doi: 10.1016/0005-2736(94)90002-7. [DOI] [PubMed] [Google Scholar]
  • 47.Heide U. v. d., Levine Y.K. A computer simulation study of probe molecule behaviour in lipid bilayer systems. Mol. Phys. 1994;83:1251–1264. [Google Scholar]
  • 48.Wilson M.A., Pohorille A. Molecular dynamics of a water-lipid bilayer interface. J. Am. Chem. Soc. 1994;116:1490–1501. doi: 10.1021/ja00083a038. [DOI] [PubMed] [Google Scholar]
  • 49.Damodaran K.V., Merz K.M., Jr. Interaction of the fusion inhibiting peptide Carbobenzoxy-D-Phe-L-Phe-Gly with N-Methyldioleoylphosphatidylethanolamine lipid bilayer. J. Am. Chem. Soc. 1995;117:6561–6571. [Google Scholar]
  • 50.Balabaev N.K., Rabinovich A.L., Ripatti P.O., Kornilov V.V. Molecular dynamics simulations of monolayers containing polyene lipids of biomembranes. Proc. SPIE. 1998;3345:198–201. [Google Scholar]
  • 51.Balabaev N.K., Rabinovich A.L., Ripatti P.O., Kornilov V.V. Molecular dynamics of monolayers containing polyunsaturated lipids. Zhurnal fizicheskoi khimii. 1998;72:686–689. [Google Scholar]
  • 52.Sundaralingam M. Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. N.Y. Acad. Sci. U.S.A. 1972;195:324–355. [PubMed] [Google Scholar]
  • 53.Nelson D.J., Hermans J., Jr. Non-bonded interatomic potential functions and crystal structure. Correction of the functions for use with macromolecules and application to polypeptide helixes. Biopolymers. 1973;12:1269–1284. [Google Scholar]
  • 54.Berendsen H.J.C., Postma J.P.M., Gunsteren A. v., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. [Google Scholar]
  • 55.Allen M.P., Tildesley P.J. Computer Simulation of Liquids. Oxford: Clarendon Press; 1987. [Google Scholar]
  • 56.Ploeg P. v. d., Berendsen H.J.C. Molecular dynamics of a bilayer membrane. Mol. Phys. 1983;49:233–248. [Google Scholar]
  • 57.Rabinovich A.L., Ripatti P.O. Computer simulations of hydrocarbon chains with cisdouble bonds: An investigation of intramolecular bond order characteristics. Proc. SPIE. 1998;3345:193–197. [Google Scholar]
  • 58.Rabinovich A.L., Ripatti P.O. Intramolecular ordering of the bonds of cis-octadecadienoic chains of natural lipids: Monte Carlo simulation (in Russian) Biofizika. 1998;43:292–298. [PubMed] [Google Scholar]
  • 59.Rabinovich A.L., Ripatti P.O. Monte Carlo investigation of intramolecular ordering of the bonds of hydrocarbon chains (in Russian) Zhurnal fizicheskoi khimii. 1998;72:681–685. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES