Abstract
Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.
Keywords: Response functions, Resonant drift, Parametric drift, Asymptotics, Spiral waves, Oscillatory medium, Autowaves, Reaction-diffusion System
Full Text
The Full Text of this article is available as a PDF (515.8 KB).
References
- 1.Gray R.A., Jalife J. Spiral waves and the heart. Int. J. of Bifurcation and Chaos. 1996;6:415–435. [Google Scholar]
- 2.Keener J.P. The dynamics of 3-dimensional scroll waves in excitable media. Physica D. 1988;31:269–276. [Google Scholar]
- 3.Biktashev V.N., Holden A.V. Resonant drift of autowave vortices in 2D and the effects of boundaries and inhomogeneities. Chaos, Solitons and Fractals. 1995;5:575–622. [Google Scholar]
- 4.Davydov V.A., Zykov V.S., Mikhailov A.S., Brazhnik P.K. Drift and resonance of spiral waves in active media. Radiofizika. 1988;31:574–582. [Google Scholar]
- 5.Agladze K.I., Davydov V.A., Mikhailov A.S. Observation of a helical wave resonance in an excitable distributed medium. JETP Lett. 1987;45:767–770. [Google Scholar]
- 6.Biktashev V.N., Holden A.V. Design principles of a low-voltage cardiac defibrillator based on the effect of feed-back resonant drift. J. Theor. Biol. 1994;169:101–113. doi: 10.1006/jtbi.1994.1132. [DOI] [PubMed] [Google Scholar]
- 7.Holden A.V. Defibrillation in models of cardiac muscle. J. Theoretical Medicine. 1997;1:91–102. [Google Scholar]
- 8.Biktashev V.N., Holden A.V. Control of re-entrant activity in a model of mammalian atrial tissue. Proc. Roy. Soc. London B. 1995;260:211–217. doi: 10.1098/rspb.1995.0082. [DOI] [PubMed] [Google Scholar]
- 9.Biktashev V.N., Holden A.V. Re-entrant activity and its control in a model of mammalian ventricular tissue. Proc. Roy. Soc. London B. 1996;263:1373–1382. doi: 10.1098/rspb.1996.0201. [DOI] [PubMed] [Google Scholar]
- 10.Biktashev V.N., Holden A.V. Re-entrant waves and their elimination in a model of mammalian ventricular tissue. Chaos. 1998;8:48–56. doi: 10.1063/1.166307. [DOI] [PubMed] [Google Scholar]
- 11.Biktasheva I.V., Elkin Y., Biktashev V.N. Localised sensitivity of spiral waves in the Complex Ginzburg-Landau Equation. Phys. Rev. E. 1998;57:2656–2659. [Google Scholar]
- 12.Noble D., Leguennec J.Y., Winslow R. Functional roles of sodium-calcium exchange in normal and abnormal cardiac rhythm. Ann. N. Y. Acad. Sci. 1996;779:480–488. doi: 10.1111/j.1749-6632.1996.tb44822.x. [DOI] [PubMed] [Google Scholar]
- 13.Robinson J.C. Finite-dimensional behavior in dissipative partial differential equations. Chaos. 1995;5:330–345. doi: 10.1063/1.166081. [DOI] [PubMed] [Google Scholar]
- 14.Kuramoto Y., Tsuzuki T. On the formation of dissipative structures in reaction-diffusion systems: Reduction perturbation approach. Prog. Theor. Phys. 1975;54:687–699. [Google Scholar]
- 15.Hagan P.S. Spiral waves in reaction-diffusion equations. SIAM J. Appl. Math. 1982;42:762–786. [Google Scholar]
- 16.Wellner M., Pertsov A.M., Jalife J. Spatial Doppler anomaly in an excitable medium. Phys. Rev. E. 1996;54:1120–1125. doi: 10.1103/physreve.54.1120. [DOI] [PubMed] [Google Scholar]