Abstract
Three types of population growth and development of chemotaxic motile bacteria Escherichia coli on semi-solid nutrient media are investigated: a) stable development – circular symmetrical waves; b) bursts; c) fractal-like self-organization. Experimental investigation of the burst formation is presented. The microscopic analysis of growing, fractal-like structures is carried out, and a mechanism for such structure formation is suggested. It is supposed that fractal-like bacterial structures growth is based on the principle of successively forming multiple micro-bursts. A mathematical model has been suggested to reproduce the experimental results. The structures obtained by numerical modeling of population growth in the parameter space ‘substrate concentration - bacterial movement rate’ reproduce the corresponding experimental structures in the space ‘nutrient concentration in the media – the density of the media’.
Keywords: Bacterial population, Escherichia coli, Fractal-like growth, Dynamics of spatial patterns, Mathematical model, Structure formation
Full Text
The Full Text of this article is available as a PDF (238.6 KB).
References
- 1.Adler J. Effect of amino acids and oxygen on chemotaxis in E. coli. J. Bacteriol. 1966;92:121–129. doi: 10.1128/jb.92.1.121-129.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Adler J. Chemotaxis in bacteria. Science. 1966;153:708–716. doi: 10.1126/science.153.3737.708. [DOI] [PubMed] [Google Scholar]
- 3.Keller E.F., Segel L.A. Model of chemotaxis. J. Theor. Biol. 1971;30:225–234. doi: 10.1016/0022-5193(71)90050-6. [DOI] [PubMed] [Google Scholar]
- 4.Keller E.F., Segel L.A. Traveling bands of chemotactic bacteria. J. Theor. Biol. 1971;30:225–234. doi: 10.1016/0022-5193(71)90051-8. [DOI] [PubMed] [Google Scholar]
- 5.Berg H.C., Brown D.A. Chemotaxis in Escherichia coli analysed by three dimensional tracking. Nature. 1972;239:500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
- 6.Block S., Berg H.C. Successive incorporation of force-generating units in the bacterial rotary motor. Nature. 1984;309:470–472. doi: 10.1038/309470a0. [DOI] [PubMed] [Google Scholar]
- 7.Segall J.E., Block S., Berg H.C. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1986;83:8987–8991. doi: 10.1073/pnas.83.23.8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Murray J. Mathematical Biology. Berlin: Springer Verlag; 1989. [Google Scholar]
- 9.Agladze K., Budrene E., Ivanitsy G., Krinsky V., Shakhbazyan V., Tsyganov M. Wave mechanisms of pattern formation in microbial populations. Proc. R. Soc. Lond. B. 1993;253:131–135. doi: 10.1098/rspb.1993.0092. [DOI] [PubMed] [Google Scholar]
- 10.Ivanitsky G.R., Medvinsky A.B., Tsyganov M.A. From disorder to order as applied to the movement of microorganisms. Usp. Fiz. Nauk. 1991;161:13–71. [Google Scholar]
- 11.Brenner M.P., Levitov L.S., Budrene E.O. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 1998;74:1677–1693. doi: 10.1016/S0006-3495(98)77880-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Budrene E.O., Berg H.C. Complex patterns formed by motile cells of Escherichia coli. Nature. 1991;349:630–633. doi: 10.1038/349630a0. [DOI] [PubMed] [Google Scholar]
- 13.Budrene E.O., Berg H. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature. 1995;376:49–53. doi: 10.1038/376049a0. [DOI] [PubMed] [Google Scholar]
- 14.Woodward D.E., Tyson R., Myerscough M., Murray J., Budrene E., Berg H. Spatiotemporal patterns generated by salmonella. Biophys. J. 1995;68:2181–2189. doi: 10.1016/S0006-3495(95)80400-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Ben-Jacob E., Schochet O., Tenenbaum a., Cohen I., Czirok A., Vicsek T. Generic modelling of cooperative growth patterns in bacterial colonies. Nature. 1994;368:46–49. doi: 10.1038/368046a0. [DOI] [PubMed] [Google Scholar]
- 16.Ben-Jacob E., Shmueli H., Schochet O., Tenenbaum A. Adaptive self-organization during growth of bacterial colonies. Phisica A. 1992;187:378–424. [Google Scholar]
- 17.Ben-Jacob E. From snowflake formation to growth of bacterial colonies. Contemporary Physics. 1993;34(5):247–273. [Google Scholar]
- 18.Ben-Jacob E., Tenenbaum A., Schochet O., Avidan O. Holotransformations of bacterial colonies and genome cybernetics. Phisica A. 1994;202:1–47. [Google Scholar]
- 19.Kresteva I.B., Tsyganov M.A., Aslanidi G.V., Medvinsky A.B., Ivanitsky G.R. The fractal self-organization in bacterial populations of E. coli: Experimental research. Dokl. Akad. Nauk. 1996;351(3):406–409. [PubMed] [Google Scholar]
- 20.Tsyganov M.A., Kresteva I.B., Lysochenko I.V., Medvinsky A.B., Ivanitsky G.R. The farctal self-organization in bacterial populations of E. coli: Computer modelling. Dokl. Akad. Nauk. 1996;351(4):561–564. [PubMed] [Google Scholar]
- 21.Ivanitsky G.R., Medvinsky A.B., Tsyganov M.A. From cell population wave dynamics to neuro-informatics. Usp. Fiz. Nauk. 1994;164(10):1041–1072. [Google Scholar]
- 22.Medvinsky A.B., Tsyganov M.A., Kutyshenko V.P., Shakhbazian V., Kresteva I.B., Ivanitsky G.R. Instability of waves formed by motile bacteria. FEMS Microbiol. Lett. 1993;112:287–290. doi: 10.1111/j.1574-6968.1993.tb06464.x. [DOI] [PubMed] [Google Scholar]
- 23.Medvinsky A.B., Tsyganov M.A., Karpov V.A., Kresteva I.B., Shakhbazian V., Ivanitsky G.R. Bacterial population autowave pattern: Spontaneous symmetry bursting. Physica D. 1994;79:299–305. [Google Scholar]
