Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 1999 Mar;25(1):35–39. doi: 10.1023/A:1005190615390

Amplitude Hierarchy of Vesicle Shapes

L Xu 1, H-G Döbereiner 1,
PMCID: PMC3456069  PMID: 23345686

Abstract

Shapes of fluid lipid vesicles are governed by the bending elasticity of their membrane as described by the Area-Difference-Elasticity (ADE) model. These shapes can be quantified using a suitable modal representation of the vesicle contour. Prolate vesicles are characterized by a hierarchy in their shape amplitudes. Experimentally, we find an ordering of the amplitudes with mode number both in large (100 nm) as well as giant (10 μm) unilamellar vesicles. Mean shapes are found only within the small energetically stable region of the prolate phase. Our study demonstrates that bending energy concepts may be quantitatively used on cellular length scales ranging from the size of organelles to the plasma membrane.

Keywords: Vesicle shapes, Bending energy, Spontaneous curvature

Full Text

The Full Text of this article is available as a PDF (46.8 KB).

References

  • 1.Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 1973;28c:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  • 2.Evans E. Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 1974;14:923–931. doi: 10.1016/S0006-3495(74)85959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lipowsky R. The conformation of membranes. Nature. 1991;349:475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  • 4.Seifert U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997;46:13–137. [Google Scholar]
  • 5.Döbereiner, H.-G.: Fluctuating vesicle shapes, in P. Walde and P. Luisi (eds), Giant vesicles, Wiley, to appear.
  • 6.Döbereiner H.-G., Seifert U. Giant vesicles at the prolate-oblate transition: A macroscopic bistable system. Europhys. Lett. 1996;36:325–330. [Google Scholar]
  • 7.Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 1991;60:825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Döbereiner H.-G., Evans E., Seifert U., Wortis M. Spinodal fluctuations of budding vesicles. Phys. Rev. Lett. 1995;75:3360–3363. doi: 10.1103/PhysRevLett.75.3360. [DOI] [PubMed] [Google Scholar]
  • 9.Farge E., Devaux P. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys. J. 1992;92:347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Döbereiner H.-G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys. J. 1993;65:1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wintz W., Döbereiner H.-G., Seifert U. Starfish vesicles. Europhys. Lett. 1996;33:403–408. [Google Scholar]
  • 12.Kraus M., Seifert U., Lipowsky R. Gravity-induced shape transformations of vesicles. Europhys. Lett. 1995;31:431–436. [Google Scholar]
  • 13.Sackmann E. Membrane bending energy concept of vesicle and cell-shapes and shape transitions, 7th Datta Lecture. FEBS Lett. 1994;346:3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  • 14.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd edition. New York: Garland; 1994. [Google Scholar]
  • 15.Mashl R.J., Bruinsma R. Spontaneous-curvature theory of clathrin-coated membranes. Biophys. J. 1998;74:2862–2875. doi: 10.1016/S0006-3495(98)77993-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Svetina S., Brumen M., Žekš B. Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis. Stud. Biophys. 1985;110:177–184. [Google Scholar]
  • 17.Miao L., Seifert U., Wortis M., Döbereiner H.-G. Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Phys. Rev. E. 1994;49:5389–5407. doi: 10.1103/physreve.49.5389. [DOI] [PubMed] [Google Scholar]
  • 18.Schneider M.B., Jenkins J.T., Webb W.W. Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J. Phys. France. 1984;45:1457–1472. doi: 10.1016/S0006-3495(84)84235-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Duwe H.P., Käs J., Sackmann E. Bending elastic moduli of lipid bilayers: Modulation by solutes. J. Phys. (Paris) 1990;51:945–961. [Google Scholar]
  • 20.Méléard P., Faucon J., Mitov M., Bothorel P. Pulsed-light microscopy applied to the measurement of the bending elasticity of giant liposomes. Europhys. Lett. 1992;19:267–271. [Google Scholar]
  • 21.Berndl K., Käs J., Lipowsky R., Sackmann E., Seifert U. Shape transformations of giant vesicles: Extreme sensitivity to bilayer asymmetry. Europhys. Lett. 1990;13:659–664. [Google Scholar]
  • 22.Mui B.L.-S., Döbereiner H.-G., Madden T.D., Cullis P.R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys. J. 1995;69:930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Döbereiner H.-G., Evans E., Kraus M., Seifert U., Wortis M. Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory. Phys. Rev. E. 1997;55:4458–4474. [Google Scholar]
  • 24.Döbereiner H.-G., Selchow O., Lipowsky L. Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. 1999;28:174–178. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES