Abstract
Aging in humans may be accompanied by alterations in several functional abilities. However, there is a great deal of individual variability in the functions that may be altered with age within and across aged people. One potential source of age-related behavioral variation may lie in a differential vulnerability of neurobiological systems to the aging process in particular individuals. Aged monkeys demonstrate behavioral and brain alterations that have many parallels with those observed in aged humans and are valuable animal models in which to investigate the interrelationships between age, behavior and neurobiological measures. This review outlines the similarities of functional and neurobiological aging in monkeys and humans, notes the variability that exists in both behavioral and neural systems in aging, and identifies some of the areas of aging that are in need of further investigation.
Key words: monkeys, aging, learning, memory, attention, motor skills, neurotransmitters, morphology, pharmacology
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
References
- Aigner T.G., Mishkin M. The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav. Neural. Biol. 1986;45:81–87. doi: 10.1016/S0163-1047(86)80008-5. [DOI] [PubMed] [Google Scholar]
- Aigner T.G., Walker D.L., Mishkin M. Comparison of the effects of scopolamine administered before and after acquisition in a test of visual recognition memory in monkeys. Behav. Neural. Biol. 1991;55:61–67. doi: 10.1016/0163-1047(91)80127-Z. [DOI] [PubMed] [Google Scholar]
- Albert M.S. In: Cognitive Function, in Geriatric Neuropsychology. Albert M.S., Moss M.R., editors. New York: Guilford Press; 1988. pp. 33–53. [Google Scholar]
- Albert M., Moss M. The assessment of memory disorders in patients with Alzheimer disease. In: Squire L.R., Butters N.E., editors. Neuropsychology of Memory. New York: Guilford Press; 1992. pp. 236–246. [Google Scholar]
- Antonini A., Leenders K.L. Dopamine D2 receptors in normal human brain: effect of age measured by positron emission tomography (PET) and [11]C-raclopride. Ann. N.Y. Acad. Sci. 1993;695:81–85. doi: 10.1111/j.1749-6632.1993.tb23033.x. [DOI] [PubMed] [Google Scholar]
- Antonini A., Leenders K.L., Reist H., Thomann R., Beer H.-F., Locher J. Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride. Arch. Neurol. 1993;50:474–480. doi: 10.1001/archneur.1993.00540050026010. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F.T., Contant T.A. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology. 1992;108:159–169. doi: 10.1007/BF02245302. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F., Goldman-Rakic P.S. Catecholamines and cognitive decline in aged nonhuman primates. Ann. N.Y. Acad. Sci. 1985;444:218–234. doi: 10.1111/j.1749-6632.1985.tb37592.x. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F.T., Goldman-Rakic P.S. a2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230:1273–1276. doi: 10.1126/science.2999977. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F.T., Goldman-Rakic P.S. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol. Aging. 1990;11:583–590. doi: 10.1016/0197-4580(90)90021-Q. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F.T., Cai J.X., Goldman-Rakic P.S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J. Neurosci. 1988;8:4287–4298. doi: 10.1523/JNEUROSCI.08-11-04287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnsten A.F.T., Cai J.X., Murphy B.L., Goldman-Rakic P.S. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology. 1994;116:143–151. doi: 10.1007/BF02245056. [DOI] [PubMed] [Google Scholar]
- Arnsten A.F.T., Cai J.X., Steere J.C., Goldman-Rakic P.S. Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J. Neurosci. 1995;15:3429–3439. doi: 10.1523/JNEUROSCI.15-05-03429.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachevalier J., Landis L.S., Walker L.C., Brickson M., Mishkin M., Price D.L., Cork L.C. Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol. Aging. 1991;12:99–111. doi: 10.1016/0197-4580(91)90048-O. [DOI] [PubMed] [Google Scholar]
- Bakner L., Treichler F.R. Age differences in the acquisition and retention of concurrent discriminations by monkeys. Anim. Learn. Behav. 1993;21:51–58. [Google Scholar]
- Bartus R.T. Physostigmine and recent memory: effects in young and aged nonhuman primates. Science. 1979;206:1087–1089. doi: 10.1126/science.227061. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L. Recent memory in aged nonhuman primates: hypersensitivity to visual interference during retention. Exp. Aging Res. 1979;5:385–400. doi: 10.1080/03610737908257214. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L. Lack of efficacy of clonidine on memory in aged cebus monkeys. Neurobiol. Aging. 1988;9:409–411. doi: 10.1016/s0197-4580(88)80089-7. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Johnson H.R. Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol. Biochem. Behav. 1976;5:39–46. doi: 10.1016/0091-3057(76)90286-0. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L., Beer B. Memory deficits in aged cebus monkeys and facilitation with central cholinomimetics. Neurobiol. Aging. 1980;1:145–152. doi: 10.1016/0197-4580(80)90008-1. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L., Beer B. Neuropeptide effects on memory in aged monkeys. Neurobiol. Aging. 1982;3:61–68. doi: 10.1016/0197-4580(82)90062-8. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L., Beer B. An evaluation of drugs for improving memory in aged monkeys: implications for clinical trials in humans. Psychopharmacology Bull. 1983;19:168–184. [PubMed] [Google Scholar]
- Bartus R.T., Dean R.L., Fleming D.L. Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J. Gerontol. 1979;34:209–219. doi: 10.1093/geronj/34.2.209. [DOI] [PubMed] [Google Scholar]
- Bartus R.T., Fleming D., Johnson H.R. Aging in the rhesus monkey: debilitating effects on short-term memory. J. Gerontol. 1978;33:858–871. doi: 10.1093/geronj/33.6.858. [DOI] [PubMed] [Google Scholar]
- Baxter M.G., Voytko M.L. Spatial orienting of attention in adult and aged rhesus monkeys. Behav. Neurosci. 1996;110:898–904. doi: 10.1037/0735-7044.110.5.898. [DOI] [PubMed] [Google Scholar]
- Beal M.F., Walker L.C., Storey E., Segar L., Price D.L., Cork L.C. Neurotransmitters in neocortex of aged rhesus monkeys. Neurobiol. Aging. 1991;12:407–412. doi: 10.1016/0197-4580(91)90065-R. [DOI] [PubMed] [Google Scholar]
- Bigham M.H., Lidow M.S. Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiol. Aging. 1995;16:91–104. doi: 10.1016/0197-4580(95)80012-G. [DOI] [PubMed] [Google Scholar]
- Bigl V., Arendt T., Fischer S., Fischer S., Werner M., Arendt A. The cholinergic system in aging. Gerontology. 1987;33:172–180. doi: 10.1159/000212872. [DOI] [PubMed] [Google Scholar]
- Botwinick J. Aging and Behavior. New York: Springer Publishing Co.; 1978. pp. 87–112. [Google Scholar]
- Buccafusco J.J., Jackson W.J. Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiol. Aging. 1991;12:233–238. doi: 10.1016/0197-4580(91)90102-P. [DOI] [PubMed] [Google Scholar]
- Buell S.J., Coleman P.D. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science. 1979;206:854–856. doi: 10.1126/science.493989. [DOI] [PubMed] [Google Scholar]
- Buell S.J., Coleman P.D. Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain. 1981;214:23–41. doi: 10.1016/0006-8993(81)90436-4. [DOI] [PubMed] [Google Scholar]
- Brizzee K.R., Ordy J.M., Bartus R.T. Localization of cellular changes within multimodal sensory regions in aged monkey brain: possible implications for age-related cognitive loss. Neurobiol. Aging. 1980;1:45–52. doi: 10.1016/0197-4580(80)90023-8. [DOI] [PubMed] [Google Scholar]
- Callahan M.J., Kinsora J.J., Harbaugh R.E., Reeder T.M., Davis R.E. Continuous ICV infusion of scopolamine impairs sustained attention of rhesus monkeys. Neurobiol. Aging. 1993;14:147–151. doi: 10.1016/0197-4580(93)90090-X. [DOI] [PubMed] [Google Scholar]
- Christie J.E., Shering A., Ferguson J., Glen A.I.M. Phsyostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia. Br. J. Psychiatry. 1981;138:46–50. doi: 10.1192/bjp.138.1.46. [DOI] [PubMed] [Google Scholar]
- Chui H.C., Bondareff W., Zarow C., Slager U. Stability of neuronal number in the human nucleus basalis of Meynert with age. Neurobiol. Aging. 1984;5:83–88. doi: 10.1016/0197-4580(84)90035-6. [DOI] [PubMed] [Google Scholar]
- Ciocon J.O., Potter J.F. Age-related changes in human memory: normal and abnormal. Geriatrics. 1988;43:43–48. [PubMed] [Google Scholar]
- Coleman P.D., Flood D.G. Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol. Aging. 1987;8:521–545. doi: 10.1016/0197-4580(87)90127-8. [DOI] [PubMed] [Google Scholar]
- Craik F.I.M., Jennings J.M. Human memory. In: Craik F.I.M., Salthouse T.A., editors. Handbook of Aging and Cognition. New Jersey: Lawrence Erlbaum Assoc.; 1992. pp. 51–110. [Google Scholar]
- Craik F.I.M., Byrd M., Swanson J.M. Patterns of memory loss in three elderly samples. Psychol. Aging. 1987;2:79–86. doi: 10.1037/0882-7974.2.1.79. [DOI] [PubMed] [Google Scholar]
- Cupp C.J., Uemura E. Age-related changes in prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp. Neurol. 1980;69:143–163. doi: 10.1016/0014-4886(80)90150-8. [DOI] [PubMed] [Google Scholar]
- Davidson M., Stem R.G. The treatment of cognitive impairment in Alzheimers disease: beyond the cholinergic approach. Psychiatr. Clin. North Am. 1991;14:461–482. [PubMed] [Google Scholar]
- Davies P. Loss of choline acetyltransferase activity in normal aging and in senile dementia. Adv. Exp. Med. Biol. 1978;113:251–256. doi: 10.1007/978-1-4684-8893-7_16. [DOI] [PubMed] [Google Scholar]
- Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer’s type. Brain Res. 1979;171:319–327. doi: 10.1016/0006-8993(79)90336-6. [DOI] [PubMed] [Google Scholar]
- Davis R.T. Monkeys as perceivers. In: Rosenblum L.A., editor. Primate Behavior: Developments in the Field and Laboratory Research. New York: Academic Press; 1974. [Google Scholar]
- Davis R.T. Old monkey behavior. Exp. Gerontol. 1978;13:237–250. doi: 10.1016/0531-5565(78)90018-9. [DOI] [PubMed] [Google Scholar]
- Davis R.T., Bennett C.A., Weisenburger W.P. Repeated measurements of forgetting by rhesus monkeys (Macaca mulatta) Percept. Mot. Skills. 1982;55:703–709. [Google Scholar]
- Davis R.T., Ruggiero F.T. Memory in monkeys as a function of preparatory interval and pattern complexity of matrix displays. Amer. J. Phys. Anthropol. 1973;38:573–577. doi: 10.1002/ajpa.1330380269. [DOI] [PubMed] [Google Scholar]
- Decker M.W. The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Res. Rev. 1987;12:423–438. doi: 10.1016/0165-0173(87)90007-5. [DOI] [PubMed] [Google Scholar]
- De Keyser J., De Backer J.-P., Vauquelin G., Ebinger G. D1 and D2 dopamine receptors in human substantia nigra: localization and the effect of aging. J. Neurochem. 1991;56:1130–1133. doi: 10.1111/j.1471-4159.1991.tb11402.x. [DOI] [PubMed] [Google Scholar]
- De Keyser J., De Backer J.P., Vauquelin G., Ebinger G. The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Res. 1990;528:308–310. doi: 10.1016/0006-8993(90)91672-4. [DOI] [PubMed] [Google Scholar]
- De Keyser J., Ebinger G., Vauquelin G. Age-related changes in the human nigrostriatal dopaminergic system. Ann. Neurol. 1990;27:157–161. doi: 10.1002/ana.410270210. [DOI] [PubMed] [Google Scholar]
- DeKosky S.T., Palmer A.M. Neurochemistry of aging. In: Albert M.L., Knoefel J.E., editors. Clinical Neurology of Aging. New York: Oxford University Press; 1994. pp. 79–101. [Google Scholar]
- DeKosky S.T., Scheff S.W., Markesbery W.R. Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer’s disease and aging. Neurology. 1985;35:1425–1431. doi: 10.1212/wnl.35.10.1425. [DOI] [PubMed] [Google Scholar]
- De Lacalle S., Iraizoz I., Ma Gonzalo L. Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience. 1991;43:445–456. doi: 10.1016/0306-4522(91)90307-A. [DOI] [PubMed] [Google Scholar]
- De Leon M.J., Ferris S.H., George A.E., Reisberg B., Christman D.R., Kricheff I.I., Wolf A.P. Computed tomography and positron emission transaxial tomography evaluations of normal aging and AIzheimer’s disease. J. Cereb. Blood Flow Metab. 1983;3:391–394. doi: 10.1038/jcbfm.1983.57. [DOI] [PubMed] [Google Scholar]
- Dewey S.L., Volkow N.D., Logan J., MacGregor R.R., Folwer J.S., Schlyer D.J., Bendriem B. Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET) J. Neurosci. Res. 1990;27:569–575. doi: 10.1002/jnr.490270418. [DOI] [PubMed] [Google Scholar]
- Dillon K.A., Gross-Isseroff R., Israeli M., Biegon A. Autoradiographic analysis of serotonin 5-HT1A receptor binding in the human brain postmortem: effects of age and alcohol. Brain Res. 1991;554:56–64. doi: 10.1016/0006-8993(91)90171-Q. [DOI] [PubMed] [Google Scholar]
- Duara R., Grady C., Haxby J., Ingvar D., Sokoloff L., Margolin R.A., Manning R.G., Cutler N.R., Rapoport S.I. Human brain glucose utilization and cognitive function in relation to age. Ann. Neurol. 1984;16:702–713. doi: 10.1002/ana.410160613. [DOI] [PubMed] [Google Scholar]
- Duara R., Margolin R.A., Robertson-Tchabo E.A., London E.D., Schwartz M., Renfrew J.W., Koziarz B.J., Sundaram M., Grady C., Moore A.M., Ingvar D.H., Sokoloff L., Weingartner H., Kessler R.M., Manning R.G., Channing M.A., Cutler N.R., Rapoport S.I. Cerebral glucose utilization as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain. 1983;106:761–775. doi: 10.1093/brain/106.3.761. [DOI] [PubMed] [Google Scholar]
- Eagger S.A., Levy R., Sahakian B.J. Tacrine in Alzheimer’s disease. Lancet. 1991;337:989–992. doi: 10.1016/0140-6736(91)92656-M. [DOI] [PubMed] [Google Scholar]
- Eberling J.L., Roberts J.A., De Manincor D., Brennan K.M., Hanrahan S.M., Vanbrocklin H.F., Roos M.S., Jagust W.J. PET studies of cerebral glucose metabolism in conscious rhesus macaques. Neurobiol. Aging. 1995;16:825–832. doi: 10.1016/0197-4580(95)00085-S. [DOI] [PubMed] [Google Scholar]
- Ebmeier K.P., Hunter R., Curran S.M., Dougal N.J., Murray C.L., Wyper D.J., Patterson J., Hanson M.T., Siegfried K., Goodwin G.M. Effects of a single dose of acetylcholinesterase inhibitor velnacrine on recognition memory and regional cerebral blood flow in Alzheimer’s disease. Psychopharmacology. 1992;108:103–109. doi: 10.1007/BF02245293. [DOI] [PubMed] [Google Scholar]
- Efange, SMN, Garland, EM, Staley, JK, and Mash, DC: (+)-[125I]MIBT binding in human temporal cortex reveals cholinergic hypofunction in Alzheimer’s disease. Eleventh International Symposium on Radiopharmaceutical Chemistry Abstracts, 1995b, 376–377.
- Efange S.M.N., Mach R.H., Khare A., Michelson R.H., Nowak P.A., Evora P.H. p-[18F]Fluorobenzyl-trozamicol ([18F]FBT): molecular decomposition-reconstitution approach to vesamicol receptor radioligands for positron emission tomography. Appl. Radiat. Isot. 1994;45:465–472. doi: 10.1016/0969-8043(94)90113-9. [DOI] [PubMed] [Google Scholar]
- Efange S.M.N., Mach R.H., Smith C.R., Khare A.B., Foulon C., Akella S.K., Childers S.R., Parsons S.M. Vesamicol analogues as sigma ligands. Molecular determinants of selectivity at the vesamicol receptor. Biochem. Pharmacol. 1995;49:791–797. doi: 10.1016/0006-2952(94)00541-S. [DOI] [PubMed] [Google Scholar]
- Fitten L.J., Perryman K., Tachiki K., Kling A. Oral tacrine administration in middle-aged monkeys: effects on discrimination learning. Neurobiol. Aging. 1988;9:221–224. doi: 10.1016/s0197-4580(88)80055-1. [DOI] [PubMed] [Google Scholar]
- Fletcher H.J., Mowbray J.B. Note on learning in an aged monkey. Psychol. Rep. 1962;10:11–13. doi: 10.2466/PR0.10.1.11-13. [DOI] [Google Scholar]
- Flicker C., Bartus R.T., Crook T.H., Ferris S.H. Effects of aging and dementia upon recent visuospatial memory. Neurobiol. Aging. 1984;5:275–283. doi: 10.1016/0197-4580(84)90003-4. [DOI] [PubMed] [Google Scholar]
- Flood D.G. Region-specific stability of dendritic extent in normal aging and regression in Alzheimer’s disease. II. Subiculum. Brain Res. 1991;540:83–95. doi: 10.1016/0006-8993(91)90494-G. [DOI] [PubMed] [Google Scholar]
- Flood D.G., Buell S.J., De Fiore C.H., Horwitz G.J., Coleman P.D. Age-related dendritic growth in dentate gyrus of human brain is followed by regression in the “oldest old”. Brain Res. 1985;345:366–368. doi: 10.1016/0006-8993(85)91018-2. [DOI] [PubMed] [Google Scholar]
- Flood D.G., Buell S.J., Horwitz G.J., Coleman P.D. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res. 1987;402:205–216. doi: 10.1016/0006-8993(87)90027-8. [DOI] [PubMed] [Google Scholar]
- Folk C.L., Hoyer W.J. Aging and shifts of visual spatial attention. Psychol. Aging. 1992;7:453–463. doi: 10.1037/0882-7974.7.3.453. [DOI] [PubMed] [Google Scholar]
- Gazzaley A.H., Siegel S.J., Kordower J.H., Mufson E.J., Morrison J.H. Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proc. Natl. Acad. Sci. U.S.A. 1996;93:3121–3125. doi: 10.1073/pnas.93.7.3121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhardt G.A., Cass W.A., Henson M., Zhang Z., Ovadia A., Hoffer B.J., Gash D.M. Age-related changes in potassium-evoked overflow of dopamine in the striatum of the rhesus monkey. Neurobiol. Aging. 1995;16:939–946. doi: 10.1016/0197-4580(95)02013-6. [DOI] [PubMed] [Google Scholar]
- Goldman-Rakic P.S., Brown R.M. Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience. 1981;6:177–187. doi: 10.1016/0306-4522(81)90053-1. [DOI] [PubMed] [Google Scholar]
- Gorman L.K. Age-related behavioral and neurochemical deficits: the cholinergic system revisited. Neurobiol. Aging. 1993;14:699–702. doi: 10.1016/0197-4580(93)90077-O. [DOI] [PubMed] [Google Scholar]
- Gottsdanker R. Age and simple reaction time. J. Gerontol. 1982;37:342–348. doi: 10.1093/geronj/37.3.342. [DOI] [PubMed] [Google Scholar]
- Greenwood P.M., Parasuraman R., Haxby J.V. Changes in visuospatial attention over the adult lifespan. Neuropsychologia. 1993;31:471–485. doi: 10.1016/0028-3932(93)90061-4. [DOI] [PubMed] [Google Scholar]
- Growdon J.H. Biologic therapies for Alzheimer’s disease. In: Whitehouse P.J., editor. Dementia. Philadelphia: F.A. Davis; 1993. pp. 375–399. [Google Scholar]
- Hanks S.D., Flood D.G. Region-specific stability of dendritic extent in normal aging and regression in Alzheimer’s disease. I. CA1 of hippocampus. Brain Res. 1991;540:63–82. doi: 10.1016/0006-8993(91)90493-F. [DOI] [PubMed] [Google Scholar]
- Hartley A.A. Attention. In: Craik F.I.M., Salthouse T.A., editors. Handbook of Aging and Cognition. New Jersey: Erlbaum Assoc.; 1992. pp. 3–49. [Google Scholar]
- Hartley A.A., Kieley J.M., Slabach E.H. Age differences and similarities in the effects of cues and prompts. J. Exper. Psychol. Human Perception Performance. 1990;16:523–537. doi: 10.1037/0096-1523.16.3.523. [DOI] [PubMed] [Google Scholar]
- Haug H. Macroscopic and microscopic morphometry of the human brain and cortex. A survey in the light of new results. Brain Pathol. 1984;1:123–149. [Google Scholar]
- Irwin I., DeLanney L.E., McNeill T., Chan P., Forno L., Murphy M.M., DiMonte D.A., Sandy M.S., Langston J.W. Aging and the nigrostriatal dopamine system: a nonhuman primate study. Neurodegeneration. 1994;3:251–265. [PubMed] [Google Scholar]
- Jackson W.J., Buccafusco J.J., Terry A.V., Turk D.J., Rush D.K. Velnacrine maleate improves delayed matching performance by aged monkeys. Psychopharmacology. 1995;119:391–398. doi: 10.1007/BF02245854. [DOI] [PubMed] [Google Scholar]
- Jordan T.C., Rabbitt P.M.A. Response times to stimuli of increasing complexity as a function of ageing. Br. J. Psychol. 1977;68:189–201. doi: 10.1111/j.2044-8295.1977.tb01575.x. [DOI] [PubMed] [Google Scholar]
- Kalaria R.N., Andorn A.C., Tabaton M., Whitehouse P.J., Harik S.I., Unnerstall J.R. Adrenergic receptors in aging and Alzheimer’s disease: increased beta-2-receptors in prefrontal cortex and hippocampus. J. Neurochem. 1989;53:1772–1781. doi: 10.1111/j.1471-4159.1989.tb09242.x. [DOI] [PubMed] [Google Scholar]
- Kalaria R.N., Andorn A.C. Adrenergic receptors in aging and Alzheimer’s disease: decreased alpha-2 receptors demonstrated by [3H]p-aminoclonidine binding in prefrontal cortex. Neurobiol. Aging. 1991;12:131–136. doi: 10.1016/0197-4580(91)90051-K. [DOI] [PubMed] [Google Scholar]
- Kausler D.H. Learning and Memory in Normal Aging. New York: Academic Press; 1994. [Google Scholar]
- Kemper T.L. Relationship of cerebral cortical changes to nuclei in the brainstem. Neurobiol. Aging. 1993;14:659–660. doi: 10.1016/0197-4580(93)90061-F. [DOI] [PubMed] [Google Scholar]
- Kemper T.L. Neuroanatomical and neuropathological changes during aging and dementia. In: Albert M.L., Knoefel J.E., editors. Clinical Neurology of Aging. New York: Oxford University Press; 1994. pp. 3–67. [Google Scholar]
- Kornhuber J., Retz W., Riederer P., Heinsen H., Fritze J. Effect of antemortem and postmortem factors on [3H]glutamate binding in the human brain. Neurosci. Lett. 1988;93:312–317. doi: 10.1016/0304-3940(88)90101-2. [DOI] [PubMed] [Google Scholar]
- Kornhuber J., Mack-Burkhardt F., Konradi C., Fritze J., Riederer P. Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: transient elevation during early childhood. Life Sci. 1989;45:745–749. doi: 10.1016/0024-3205(89)90094-5. [DOI] [PubMed] [Google Scholar]
- Kuhl D.E., Metter E.J., Riege W.H., Phelps M.E. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxy-glucose method. Ann. Neurol. 1982;15:419–424. doi: 10.1002/ana.410150504. [DOI] [PubMed] [Google Scholar]
- Lai J., Bowden D.M., Horita A. Age-related decreases in dopamine receptors in the caudate nucleus and putamen of the rhesus monkey (Macaca mulatta) Neurobiol. Aging. 1987;8:45–49. doi: 10.1016/0197-4580(87)90056-X. [DOI] [PubMed] [Google Scholar]
- Lai Z.C., Moss M.B., Killiany R.J., Rosene D.L., Herndon J.G. Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol. Aging. 1995;16:947–954. doi: 10.1016/0197-4580(95)02014-4. [DOI] [PubMed] [Google Scholar]
- La Rue A. Aging and Neuropsychological Assessment. New York: Plenum Press; 1992. pp. 47–44. [Google Scholar]
- Lee K.S., Frey K.A., Koeppe R.A., Buck A., Mulholland G.K., Foster N.L., Kuhl D.E. Quantification of muscarinic cholinergic receptors in aging and Alzheimer’s disease. J. Nucl. Med. 1991;32:942–943. [Google Scholar]
- LeVere S.D., Levere T.E. Old age and cognition: evaluation of a human short-term memory test with nonhuman primates and the memory-enhancing effects of nimodipine. Psychobiology. 1994;22:106–111. [Google Scholar]
- Light K.E. Information processing for motor performance in aging adults. Phys. Ther. 1990;70:820–826. doi: 10.1093/ptj/70.12.820. [DOI] [PubMed] [Google Scholar]
- Light K.E., Spirduso W.W. Effects of adult aging on the movement complexity factor of response programming. J. Gerontol.: Psychol. Sci. 1990;45:P107–109. doi: 10.1093/geronj/45.3.p107. [DOI] [PubMed] [Google Scholar]
- Lowes-Hummel P., Gertz H.-J., Ferszt R., Cervos-Navarro J. The basal nucleus of Meynert revised: the nerve cell number decreases with age. Arch. Gerontol. Gedatr. 1989;8:21–27. doi: 10.1016/0167-4943(89)90066-6. [DOI] [PubMed] [Google Scholar]
- Madden D.J. Adult age differences in the time course of visual attention. J. Gerontol.: Psychol. Sci. 1994;45:9–16. doi: 10.1093/geronj/45.1.p9. [DOI] [PubMed] [Google Scholar]
- Mann D.M.A., Yates P.O., Marcyniuk B. Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mech. Ageing Dev. 1984;25:189–204. doi: 10.1016/0047-6374(84)90140-4. [DOI] [PubMed] [Google Scholar]
- Mann D.M.A., Yates P.O., Marcyniuk B. Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age-related continuum of pathological changes. Neuropathol. Appl. Neurobiol. 1984;10:185–207. doi: 10.1111/j.1365-2990.1984.tb00351.x. [DOI] [PubMed] [Google Scholar]
- Marriott J.G., Abelson J.S. Age differences in short-term memory of test-sophisticated rhesus monkeys. Age. 1980;3:7–9. [Google Scholar]
- McDowd J.M., Birren J.E. Aging and attentional processes. In: Birren J.E., Schaie K.W., editors. Handbook of the Psychology of Aging. third edition. New York: Academic Press; 1990. pp. 222–233. [Google Scholar]
- McEntee W.J., Crook T.H. Serotonin, memory, and the aging brain. Psychopharmacology. 1991;103:143–149. doi: 10.1007/BF02244194. [DOI] [PubMed] [Google Scholar]
- McGeer P.L., McGeer E.G., Suzuki J., Dolman C.E., Nagai T. Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology. 1984;34:741–745. doi: 10.1212/wnl.34.6.741. [DOI] [PubMed] [Google Scholar]
- Medin D.L. Form perception and pattern reproduction in monkeys. J. Comp. Physiol. Psychol. 1969;68:412–419. doi: 10.1037/h0027519. [DOI] [PubMed] [Google Scholar]
- Medin D.L., O’Neil P., Smeltz E., Davis R.T. Age differences in retention of concurrent discrimination problems in monkeys. J. Gerontol. 1973;28:63–67. doi: 10.1093/geronj/28.1.63. [DOI] [PubMed] [Google Scholar]
- Moeller J.R., Ishikawa T., Dhawan V., Spetsieris P., Mandel F., Alexander G.E., Grady C., Pietrini P., Eidelberg D. The metabolic topography of normal aging. J. Cereb. Blood Flow Metab. 1996;16:385–398. doi: 10.1097/00004647-199605000-00005. [DOI] [PubMed] [Google Scholar]
- Morgan D.G., May P.C., Finch C.E. Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J. Amer. Gerontol. Soc. 1987;35:334–345. doi: 10.1111/j.1532-5415.1987.tb04641.x. [DOI] [PubMed] [Google Scholar]
- Morse C.K. Does variability increase with age? An archival study of cognitive measures. Psychol. Aging. 1993;8:156–164. doi: 10.1037/0882-7974.8.2.156. [DOI] [PubMed] [Google Scholar]
- Mouradian M.M., Contreras P.C., Monahan J.B., Chase T.N. [3H]MK-801 binding in Alzheimer’s disease. Neurosci. Lett. 1988;93:225–230. doi: 10.1016/0304-3940(88)90086-9. [DOI] [PubMed] [Google Scholar]
- Moss M.B. The longitudinal assessment of recognition memory in aged rhesus monkeys. Neurobiol. Aging. 1993;14:635–636. doi: 10.1016/0197-4580(93)90052-D. [DOI] [PubMed] [Google Scholar]
- Moss M.B., Rosene D.L., Peters A. Effects of aging on visual recognition memory in the rhesus monkey. Neurobiol. Aging. 1988;9:495–502. doi: 10.1016/s0197-4580(88)80103-9. [DOI] [PubMed] [Google Scholar]
- Nakamura S., Akiguchi I., Kameyama M., Mizuno N. Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta. Neuropathol. (Bed.) 1985;65:281–284. doi: 10.1007/BF00687009. [DOI] [PubMed] [Google Scholar]
- Norberg A., Winblad B. Brain nicotinic and muscarinic receptors in normal aging and dementia. In: Fischer A., Hanin I., Lachman C., editors. Alzheimer’s and Parkinson’s Disease, Advances in Behavioral Biology. New York: Plenum Press; 1986. pp. 95–108. [Google Scholar]
- Nordberg A., Alafuzoff I., Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J. Neurosci. Res. 1992;31:103–111. doi: 10.1002/jnr.490310115. [DOI] [PubMed] [Google Scholar]
- Ordy J.M. Neurobiology and aging in nonhuman primates. In: Ordy J.M., Brizzee K.R., editors. Neurobiology of Aging, Advances in Behavioral Biology. New York: Plenum Press; 1975. pp. 575–594. [Google Scholar]
- Oscar-Berman M., Bonner R.T. Matching-and delayed matching-to-sample performance as measures of visual processing, selective attention, and memory in aging and alcoholic individuals. Neuropsychologia. 1985;23:639–651. doi: 10.1016/0028-3932(85)90065-X. [DOI] [PubMed] [Google Scholar]
- Parsons S.M., Prior C., Marshall I.G. Acetylcholine transport, storage and release. Int. Rev. Neurobiol. 1993;35:279–390. doi: 10.1016/S0074-7742(08)60572-3. [DOI] [PubMed] [Google Scholar]
- Parsons S.M., Rogers G. In vivo diagnostics for Alzheimer’s disease based on the acetylcholine transporter. Ann. Reports Med. Chem. 1993;28:247–255. [Google Scholar]
- Perry E.K., Johnson M., Kerwin J.M., Piggott M.A., Court J.A., Shaw P.J., Ince P.G., Brown A., Perry R.H. Convergent cholinergic activities in aging and Alzheimer’s disease. Neurobiol. Aging. 1992;13:393–400. doi: 10.1016/0197-4580(92)90113-C. [DOI] [PubMed] [Google Scholar]
- Peters A. The absence of significant neuronal loss from cerebral cortex with age. Neurobiol. Aging. 1993;14:657–658. doi: 10.1016/0197-4580(93)90060-O. [DOI] [PubMed] [Google Scholar]
- Peters A., Leahu D., Moss M.B., McNally K.J. The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cerebr. Cortex. 1994;6:621–635. doi: 10.1093/cercor/4.6.621. [DOI] [PubMed] [Google Scholar]
- Peters A., Sethares C. Aging and the Meynert cells in rhesus monkey primary visual cortex. Anat. Rec. 1993;236:721–729. doi: 10.1002/ar.1092360416. [DOI] [PubMed] [Google Scholar]
- Petersen R.C., Smith G., Kokmen E., Ivnik R.J., Tangalos E.G. Memory function in normal aging. Neurology. 1992;42:396–401. doi: 10.1212/wnl.42.2.396. [DOI] [PubMed] [Google Scholar]
- Piggott M.A., Perry E.K., Perry R.H., Court J.A. [3H]MK-801 binding to the NMDA receptor complex, and its modulation in human frontal cortex during development and aging. Brain Res. 1992;588:277–286. doi: 10.1016/0006-8993(92)91586-4. [DOI] [PubMed] [Google Scholar]
- Plude D.J., Hoyer W.J. Attention and performance: identifying and localizing age deficits. In: Charness N., editor. Aging and Human Performance. NewYork: Wiley & Sons; 1985. pp. 47–99. [Google Scholar]
- Ponds R.W.H.M., Vrouwer W.H., van Wolffelaar P.C. Age differences in divided attention in a simulated driving task. J. Gerontol.: Psychol. Sci. 1988;43:151–156. doi: 10.1093/geronj/43.6.p151. [DOI] [PubMed] [Google Scholar]
- Poon L.W. Differences in human memory with aging: nature, causes, and clinical implications. In: Birren J.E., Schaie K.W., editors. Handbook of the Psychology of Aging. New York: Van Nostrand Reinhold Co.; 1985. pp. 427–462. [Google Scholar]
- Posner M.I. Orienting of attention. Quart. J. Exp. Psychol. 1980;32:3–25. doi: 10.1080/00335558008248231. [DOI] [PubMed] [Google Scholar]
- Posner M.I., Cohen Y. Components of visual orienting. In: Bouma H., Bowhuis D.G., editors. Attention and Performance X: Control of Language Processes. New Jersey: Lawrence Erlbaum Assoc.; 1984. pp. 531–556. [Google Scholar]
- Presty S.K., Bachevalier J., Walker L.C., Struble R.G., Price D.L., Mishkin M., Cork L.C. Age differences in recognition memory of the rhesus monkeys (Macaca mulatta) Neurobiol. Aging. 1987;8:435–440. doi: 10.1016/0197-4580(87)90038-8. [DOI] [PubMed] [Google Scholar]
- Rapp P.R. Visual discrimination and reversal learning in the aged monkey (Macaca mulatta) Behav. Neurosci. 1990;104:876–884. doi: 10.1037/0735-7044.104.6.876. [DOI] [PubMed] [Google Scholar]
- Rapp P.R., Amaral D.G. Evidence for task-dependent memory dysfunction in the aged monkey. J. Neurosci. 1989;9:3568–3576. doi: 10.1523/JNEUROSCI.09-10-03568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp P.R., Amaral D.G. Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobiol. Aging. 1991;12:481–486. doi: 10.1016/0197-4580(91)90077-W. [DOI] [PubMed] [Google Scholar]
- Rapp, PR, Kansky, MT and Eichenbaum, H: Learning and memory for hierarchical relationships in the monkey: effects of aging. Behav. Neurosci., in press. [DOI] [PubMed]
- Rinne J.O. Muscarinic and dopaminergic receptors in the aging human brain. Brain Res. 1987;404:162–168. doi: 10.1016/0006-8993(87)91367-9. [DOI] [PubMed] [Google Scholar]
- Rinne J.O., Hietala J., Ruotsalainen U., Säkö E., Laihinen A., Någren K., Lehikoinen P., Oikonen V., Syvälahti E. Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11]C-raclopride. J. Cereb Blood Flow Metab. 1993;13:310–314. doi: 10.1038/jcbfm.1993.39. [DOI] [PubMed] [Google Scholar]
- Rinne J.O., Lönnberg P., Marjamaki P. Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res. 1990;508:349–352. doi: 10.1016/0006-8993(90)90423-9. [DOI] [PubMed] [Google Scholar]
- Robinson D.L., Kertzman C. Visuospatial attention: effects of age, gender, and spatial reference. Neuropsychologia. 1990;28:291–301. doi: 10.1016/0028-3932(90)90022-G. [DOI] [PubMed] [Google Scholar]
- Rosene D.L. Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey. Neurobiol. Aging. 1993;14:669–670. doi: 10.1016/0197-4580(93)90065-J. [DOI] [PubMed] [Google Scholar]
- Rupniak N.M.J., Steventon M.J., Field M.J., Jennings C.A., Iversen S.D. Comparison of the effects of four cholinomimetic agents on cognition in primates following disruption by scopolamine or by lists of objects. Psychopharmacology. 1989;99:189–195. doi: 10.1007/BF00442806. [DOI] [PubMed] [Google Scholar]
- Sandin M., Jasmin S., Levere T.E. Aging and cognition: facilitation of recent memory in aged nonhuman primates by nimodipine. Neurobiol. Aging. 1990;11:573–575. doi: 10.1016/0197-4580(90)90120-O. [DOI] [PubMed] [Google Scholar]
- Scheibel M.E., Lindsay R.D., Tomiyasu U., Scheibel A.B. Progressive dendritic changes in aging human cortex. Exp. Neurol. 1975;47:392–403. doi: 10.1016/0014-4886(75)90072-2. [DOI] [PubMed] [Google Scholar]
- Scheibel M.E., Lindsay R.D., Tomiyasu U., Scheibel A.B. Progressive dendritic changes in aging human limbic system. Exp. Neurol. 1976;53:420–430. doi: 10.1016/0014-4886(76)90082-0. [DOI] [PubMed] [Google Scholar]
- Schneider N.G., Gritz E.R., Jarvik M.E. Age differences in simple paced tasks of attention and perception. Gerontology. 1977;23:142–147. doi: 10.1159/000212182. [DOI] [PubMed] [Google Scholar]
- Severson J.A., Marcusson J., Winblad B., Finch C.E. Age-correlated loss of dopaminergic binding sites in human basal ganglia. J. Neurochem. 1982;39:1623–1631. doi: 10.1111/j.1471-4159.1982.tb07996.x. [DOI] [PubMed] [Google Scholar]
- Shimamura A.P. Aging and memory disorders: a neuropsychological analysis. In: Howe M.L., Stones M.J., Brainerd C.J., editors. Cognitive and Behavioral Performance Factors in Atypical Aging. New York: Springer Verglag; 1990. pp. 37–65. [Google Scholar]
- Siddiqi Z.A., Kemper T.L., Blatt G.J. Age-related neuronal loss in the substantia nigra of rhesus monkey. Soc. Neurosci. Abstr. 1994;20:49. [Google Scholar]
- Siddiqi Z.A., Kemper T.L., Rosene D.L., Feldman M.L. Age-related changes in the rhesus monkey: neuronal loss in substantia nigra, pars compacta and ventral tegmental area. Soc. Neurosci. Abstr. 1995;21:1565. [Google Scholar]
- Sparks D.L., Hunsaker J.C., Slevin J.T., DeKosky S.T., Kryscio R.J., Markesbery W.R. Monoaminergic and cholinergic synaptic markers in the nucleus basalis of Meynert (nbM): normal age-related changes and the effect of heart disease and Alzheimer’s disease. Ann. Neurol. 1992;31:611–620. doi: 10.1002/ana.410310608. [DOI] [PubMed] [Google Scholar]
- Spirduso W.W., MacRae P.G. Motor performance and aging. In: Birren J.E., Schaie K.W., editors. Handbook of Psychology of Aging. second edition. New York: Academic Press; 1990. pp. 184–200. [Google Scholar]
- Stroessner-Johnson H.M., Rapp P.R., Amaral D.G. Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J. Neurosci. 1992;12:1936–1944. doi: 10.1523/JNEUROSCI.12-05-01936.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suhara T., Inoue O., Kobayashi K., Suzuki K., Tateno Y. Age-related changes in human muscarinic acetylcholine receptors measured by positron emission tomography. Neurosci. Lett. 1993;149:225–228. doi: 10.1016/0304-3940(93)90777-I. [DOI] [PubMed] [Google Scholar]
- Suhara T., Fukuda H., Inoue O., Itoh T., Suzuki K., Yamasaki T., Tateno Y. Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology. 1991;103:41–45. doi: 10.1007/BF02244071. [DOI] [PubMed] [Google Scholar]
- Stuss D.T., Stethem L.L., Picton T.W., Leech E.E., Pelchat G. Traumatic brain injury, aging and reaction time. Can. J. Neurol. Sci. 1989;16:161–167. doi: 10.1017/s0317167100028833. [DOI] [PubMed] [Google Scholar]
- Terry R.D., De Teresa R., Hansen L.A. Neocortical cell counts in normal human adult aging. Ann. Neurol. 1987;21:530–539. doi: 10.1002/ana.410210603. [DOI] [PubMed] [Google Scholar]
- Terry A.V., Jackson W.J., Buccafusco J.J. Effects of concomitant cholinergic and adrenergic stimulation on learning and memory performance by young and aged monkeys. Cereb. Cortex. 1993;3:304–312. doi: 10.1093/cercor/3.4.304. [DOI] [PubMed] [Google Scholar]
- Tigges J., Herndon J.A., Peters A. Neuronal population of area 4 during the life span of the rhesus monkeys. Neurobiol. Aging. 1990;11:201–208. doi: 10.1016/0197-4580(90)90546-C. [DOI] [PubMed] [Google Scholar]
- Tigges J., Herndon J.G., Rosene D.L. Mild age-related changes in the dentate gyrus of adult rhesus monkeys. Acta Anat. 1995;153:39–48. doi: 10.1159/000147713. [DOI] [PubMed] [Google Scholar]
- Uemura E. Age-related changes in prefrontal cortex of Macaca mulatta: synaptic density. Exp. Neurol. 1980;69:164–172. doi: 10.1016/0014-4886(80)90151-X. [DOI] [PubMed] [Google Scholar]
- Uemura E. Age-related changes in the subiculum of Macaca mulatta: dendritic branching pattern. Exp. Neurol. 1985;87:412–427. doi: 10.1016/0014-4886(85)90172-4. [DOI] [PubMed] [Google Scholar]
- Vannucchi, MG, and Goldman-Rakic, PS: Age-dependent decrease in the affinity of muscarinic M1 receptors in neocortex of rhesus monkeys. Proc. Natl. Acad. Sci. U.S.A., 88:11475–11479, 1991. [DOI] [PMC free article] [PubMed]
- Vincent S.L., Peters A., Tigges J. Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex. Anat. Rec. 1989;223:329–341. doi: 10.1002/ar.1092230312. [DOI] [PubMed] [Google Scholar]
- Voytko M.L. Cognitive changes during normal aging in monkeys assessed with an automated test apparatus. Neurobiol. Aging. 1993;14:634–644. doi: 10.1016/0197-4580(93)90055-G. [DOI] [PubMed] [Google Scholar]
- Voytko M.L., Sukhov R.R., Walker L.C., Breckler S.J., Price D.L., Koliatsos V.E. Neuronal number and size are preserved in the nucleus basalis of aged rhesus monkeys. Dementia. 1995;6:131–141. doi: 10.1159/000106936. [DOI] [PubMed] [Google Scholar]
- Wagster M.V. Changes in cholinergic receptor subtypes in behaviorally-tested, aged monkeys. Neurobiol. Aging. 1993;14:693–694. doi: 10.1016/0197-4580(93)90075-M. [DOI] [PubMed] [Google Scholar]
- Wagster M.V., Whitehouse P.J., Walker L.C., Kellar K.J., Price D.L. Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey. J. Neurosci. 1990;10:2879–2885. doi: 10.1523/JNEUROSCI.10-09-02879.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welford A.T. Motor skills and aging. In: Mortimer J.A., Pirozzolo F.J., Maletta G.J., editors. The Aging Motor System, Advances in Neurogerontology. New York: Praeger Publishers; 1982. pp. 152–187. [Google Scholar]
- Wenk G.L. Age-related changes in monkey and rodent neurochemistry. Neurobiol. Aging. 1993;14:689–690. doi: 10.1016/0197-4580(93)90073-K. [DOI] [PubMed] [Google Scholar]
- Wenk G.L., Pierce D.J., Struble R.G., Price D.L., Cork L.C. Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol. Aging. 1989;10:11–19. doi: 10.1016/S0197-4580(89)80005-3. [DOI] [PubMed] [Google Scholar]
- Wenk G.L., Walker L.C., Price D.L., Cork L.C. Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol. Aging. 1991;12:93–98. doi: 10.1016/0197-4580(91)90047-N. [DOI] [PubMed] [Google Scholar]
- West M.J. Regionally specific loss of neurons in the aging human hippocampus. Neurobiol. Aging. 1993;14:287–293. doi: 10.1016/0197-4580(93)90113-P. [DOI] [PubMed] [Google Scholar]
- West M.J., Amaral D.G., Rapp P.R. Preserved hippocampal cell number in aged rhesus monkeys with recognition memory deficits. Soc. Neurosci. Abstr. 1993;19:599. [Google Scholar]
- West R.L., Crook T.H., Barron K.L. Everyday memory performance across the life span: effects of age and noncognitive individual differences. Psychol. Aging. 1992;7:72–82. doi: 10.1037/0882-7974.7.1.72. [DOI] [PubMed] [Google Scholar]
- Whitehouse P.J., Parhad I.M., Hedreen J.C., Clark A.W., White C.L., Struble R.G., Price D.L. Integrity of the nucleus basalis of Meynert in normal aging. Neurology. 1983;33(Suppl2):159. [Google Scholar]
- Whitehouse P.J., Au K.S. Cholinergic receptors in aging and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1986;10:665–676. doi: 10.1016/0278-5846(86)90035-7. [DOI] [PubMed] [Google Scholar]
- Wong D.F., Wagner H.N., Dannals R.F., Links J.M., Frost J.J., Ravert H.T., Wilson A.A., Rosenbaum A.E., Gjedde A., Douglass K.H., Petronis J.D., Folstein M.F., Toung J.K.T., Burns H.D., Kuhar M.J. Effects of age on dopamine and serotonin receptors measured by positron emission tomography in the living human brain. Science. 1984;226:1393–1396. doi: 10.1126/science.6334363. [DOI] [PubMed] [Google Scholar]
- Yoshii F., Barker W.W., Chang J.Y., Loewenstein D., Apicella A., Smith D., Boothe T., Ginsberg M.D., Pascal S., Duara R. Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J. Cereb. Blood Flow Metab. 1988;8:654–661. doi: 10.1038/jcbfm.1988.112. [DOI] [PubMed] [Google Scholar]
- Zelinski E.M., Gilewski M.J., Schaie K.W. Individual differences in cross-sectional and 3-year longitudinal memory performance across the adult life span. Psychol. Aging. 1993;8:176–186. doi: 10.1037/0882-7974.8.2.176. [DOI] [PubMed] [Google Scholar]