Skip to main content
Age logoLink to Age
. 1997 Jan;20(1):15–28. doi: 10.1007/s11357-997-0002-4

Aging and atherosclerosis in human and nonhuman primates

William T Cefalu 1, Janice D Wagner 2
PMCID: PMC3456081  PMID: 23604288

Abstract

Atherosclerosis is a major age-related process and public health problem and its clinical manifestations (coronary heart disease [CHD] and cerebrovascular disease) continue to be responsible for approximately 50% of all deaths occurring annually. In addition, CHD is responsible for over 70 to 80% of deaths among men and women over 65 years old. As our population ages (35 million people over the age of 65 in the U.S. by the year 2030) and because of the increased morbidity and mortality associated with atherosclerosis, an understanding of the role of aging in the development of atherosclerosis is needed.

Multiple risk factors such as smoking, gender, hypertension, and lipids contribute to the development of atherosclerosis. However, these risk factors in combination explain only about half of the individual variability in incidence of CHD, and it has been hypothesized that age-related conditions may play a role. To propectively evaluate the effects of age per se on atherosclerosis progression in humans would require observation over many years. Thus, animal models that are representative of both aging processes and atherosclerosis would be extremely valuable. As such, nonhuman primates have been used extensively in atherosclerosis research. However, studies that will specifically evaluate the role of aging per se in contributing to development of atherosclerosis in nonhuman primates have only recently been initiated.

In this review, the contribution of nonhuman primates to atherosclerosis research will be discussed, as will the development of atherosclerosis in both human and nonhuman primates. In addition, a role for age-related conditions in atherosclerosis development in both human and nonhuman primates will be outlined.

Key words: Nonhuman primates, atherosclerosis, aging, lipids, obesity, insulin, glycation

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

References

  • 1.Thom T.J., Epstein F.H., Feldman J.J., Leaverton P.E., Wolz M. Total mortality and mortality from heart disease, cancer, and stroke from 1950 to 1987 in 27 countries. Bethesda, MD: National Institutes of Health; 1992. [Google Scholar]
  • 2.Heart and stroke facts: 1994 statistical supplement. Dallas, TX: American Heart Association; 1994. pp. 1–22. [Google Scholar]
  • 3.Guritz J.H., Osganian V., Goldberg R.J., Chen Z.Y., Gore J.M., et al. Diagnostic testing in acute myocardial infarction: does patient age influence utilization patterns? Am. J. Epidemiol. 1991;134:948–957. doi: 10.1093/oxfordjournals.aje.a116179. [DOI] [PubMed] [Google Scholar]
  • 4.Cannon L.A., Marshall J.M. Cardiac disease in the elderly population. Clin. Geriatr. Med. 1993;9:499–525. [PubMed] [Google Scholar]
  • 5.Wei J.Y., Gersh B.J. Heart disease in the elderly. Curr. Probl. Cardiol. 1987;12:1–65. [PubMed] [Google Scholar]
  • 6.Duncan A.K., Vittone J., Fleming K.C., Smith H.C. Cardiovascular disease in elderly patients. Mayo Clin. Proc. 1996;71:184–196. doi: 10.4065/71.2.184. [DOI] [PubMed] [Google Scholar]
  • 7.The Expert Panel Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II) JAMA. 1993;269:3015–3023. doi: 10.1001/jama.269.23.3015. [DOI] [PubMed] [Google Scholar]
  • 8.Schaefer, EJ, Lichenstein, AH, Lamon-Fava, S, McNamara, JR, and Ordovas, JM: Lipoproteins, nutrition, aging, and atherosclerosis. Am. J. Clin. Nutr. (suppl):726S–740S, 1995. [DOI] [PubMed]
  • 9.McGill H.C., Jr Risk factors for atherosclerosis. Adv. Exp. Med. Biol. 1978;104:273–280. doi: 10.1007/978-1-4684-7787-0_15. [DOI] [PubMed] [Google Scholar]
  • 10.Clarkson T.B., Weingand K.W., Kaplan J.R., Adams M.R. Mechanisms of atherogenesis. Circulation. 1987;76(Suppl1):20–28. [PubMed] [Google Scholar]
  • 11.Clarkson T.B., Anthony M.S., Prichard R.W. The comparative pathology of nonhuman primate atherosclerosis. Life Sci[A] 1984;79:61–78. [Google Scholar]
  • 12.Weingand K.W. Recent advances in molecular pathology: Atherosclerosis research in cynomolgus monkeys (Macaca fasciculads) Exp. Mol. Pathol. 1989;50:1–15. doi: 10.1016/0014-4800(89)90052-X. [DOI] [PubMed] [Google Scholar]
  • 13.Cefalu W.T., Wagner J.D., Wang Z.Q., Bell-Farrow A.D., Collins J., et al. Study of caloric restriction in cynomolgus monkeys (Macaca fascicularis): A potential model for aging research. J Gerontol. 1997;52A:B10–B19. doi: 10.1093/gerona/52a.1.b10. [DOI] [PubMed] [Google Scholar]
  • 14.Cooper L.T., Cooke J.P., Dzau V.J. The vasculopathy of aging. J. Gerontol. Biol. Sci. 1994;49:B191–B196. doi: 10.1093/geronj/49.5.b191. [DOI] [PubMed] [Google Scholar]
  • 15.Kannel W.B. Epidemiology of cardiovascular disease in the eldedy: an assessment of risk factors. Cardiovasc. Clin. 1992;22:9–22. [PubMed] [Google Scholar]
  • 16.Stokes J., III Cardiovascular risk factors. Cardiovasc. Clin. 1990;20:3–20. [PubMed] [Google Scholar]
  • 17.JNC V The Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V) Arch. Intern. Med. 1993;153:154–183. doi: 10.1001/archinte.153.2.154. [DOI] [PubMed] [Google Scholar]
  • 18.McGill H.C., Stern M.P. Sex and atherosclerosis. Atheroscler. Rev. 1979;4:157–235. [Google Scholar]
  • 19.Harris T., Cook E.F., Kannel W.B., Goldman L. Proportional hazards analysis of risk factors for coronary heart disease in individuals aged 65 and older: the Framingham Heart Study. J. Am. Geriatr. Soc. 1988;36:1023–1028. doi: 10.1111/j.1532-5415.1988.tb04370.x. [DOI] [PubMed] [Google Scholar]
  • 20.Stary H.C. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis. 1989;9(SupplI):I-19–I-32. [PubMed] [Google Scholar]
  • 21.St. Clair R.W. Atherosclerosis regression in animal models: Current concepts of cellular and biochemical mechanisms. Prog. Cardiovasc. Dis. 1983;26:109–132. doi: 10.1016/0033-0620(83)90026-9. [DOI] [PubMed] [Google Scholar]
  • 22.Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature. 1993;362:801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  • 23.Schwartz S.M., deBlois D., O’Brien E.R.M. The intima: Soil for atherosclerosis and restenosis. Circ. Res. 1995;77:445–465. doi: 10.1161/01.res.77.3.445. [DOI] [PubMed] [Google Scholar]
  • 24.Clarkson T.B. Progression and regression of non-human primate coronary artery atherosclerosis: Considerations of experimental design. In: Malinow M.R., Blaton V.H., editors. Regression of Atherosclerotic Lesions: Experimental Studies and Observations in Humans. New York: Plenum Press; 1984. pp. 43–60. [Google Scholar]
  • 25.Glagov S., Weisenberg E., Zarins C.K., Stankunavicius R., Kolettis G.J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 1987;316:1371–1375. doi: 10.1056/NEJM198705283162204. [DOI] [PubMed] [Google Scholar]
  • 26.Clarkson T.B., Prichard R.W., Morgan T.M., Petrick G.S., Klein K.P. Remodeling of coronary arteries in human and nonhuman primates. JAMA. 1994;271:289–294. doi: 10.1001/jama.271.4.289. [DOI] [PubMed] [Google Scholar]
  • 27.Ooyama T., Sakamato H. Elastase in the prevention of arterial ageing and the treatment of atherosclerosis. CIBA Found. Symposium. 1995;192:307–320. doi: 10.1002/9780470514771.ch16. [DOI] [PubMed] [Google Scholar]
  • 28.Clarkson T.B., Lofland H.B., Bullock B.C., Goodman H.O. Genetic control of plasma cholesterol. Studies on squirrel monkeys. Arch. Pathol. 1971;92:37–45. [PubMed] [Google Scholar]
  • 29.Rudel L.L. Plasma lipoproteins in atherogenesis in nonhuman primates. In: Kalter S.S., editor. The Use of Nonhuman Primates in Cardiovascular Disease. Austin, TX: University of Texas Press; 1980. pp. 37–57. [Google Scholar]
  • 30.Wagner W.D., Clarkson T.B. Comparative primate atherosclerosis. II. A biochemical study of lipids, calcium, and collagen in atherosclerotic arteries. Exp. Mol. Pathol. 1975;23:96–121. doi: 10.1016/0014-4800(75)90009-X. [DOI] [PubMed] [Google Scholar]
  • 31.Parks J.S. Dietary effects on experimental atherosclerosis in nonhuman primates. Curr. Opin. Lipidol. 1992;3:329–334. [Google Scholar]
  • 32.McGill H.C., Jr., McMahan M., Kruski A.W., Mott G.E. Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons. Arteriosclerosis. 1981;1:3–12. doi: 10.1161/01.atv.1.1.3. [DOI] [PubMed] [Google Scholar]
  • 33.Strong J.P., Eggen D.A., Jirge S.K. Atherosclerotic lesions produced in baboons by feeding an atherogenic diet for four years. Exp. Mol. Pathol. 1976;24:320–332. doi: 10.1016/0014-4800(76)90068-X. [DOI] [PubMed] [Google Scholar]
  • 34.Joag S.V., Li Z., Foresman L., Stephens E.B., Zhao L.J., et al. Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J. Virol. 1996;70:3189–3197. doi: 10.1128/jvi.70.5.3189-3197.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Rudel L.L., Leathers C.W., Bond M.G., Bullock B.C. Dietary ethanol-induced modification in hypedipoproteinemia and atherosclerosis in nonhuman primates (Macaca nemestrina) Arteriosclerosis. 1981;1:144–155. doi: 10.1161/01.atv.1.2.144. [DOI] [PubMed] [Google Scholar]
  • 36.Williams J.K., Anthony M.S., Clarkson T.B. Coronary heart disease in monkeys with diet-induced coronary artery atherosclerosis. Arch. Pathol. Lab. Med. 1991;115:784–790. [PubMed] [Google Scholar]
  • 37.Chawla K.K., Murthy C.D.S., Chakravarti R.N., Chuttani P.N. Arteriosclerosis and thrombosis in wild rhesus monkeys. Am. Heart J. 1967;73:85–91. doi: 10.1016/0002-8703(67)90312-2. [DOI] [PubMed] [Google Scholar]
  • 38.Honore E.K., Williams J.K., Washburn S.A., Herrington D.M. The effects of disease severity and sex on coronary endothelium-dependent vasomotor function in an atherosclerotic primate model. Coron. Artery Dis. 1996;7:579–585. doi: 10.1097/00019501-199608000-00004. [DOI] [PubMed] [Google Scholar]
  • 39.Armstrong M.L. Atherosclerosis in rhesus and cynomolgus monkeys. Primates Med. 1976;9:16–40. [PubMed] [Google Scholar]
  • 40.Wissler R.W., Vesselinovitch D. Studies of regression of advanced atherosclerosis in experimental animals and man. Ann. N.Y. Acad. Sci. 1976;275:363–378. doi: 10.1111/j.1749-6632.1976.tb43368.x. [DOI] [PubMed] [Google Scholar]
  • 41.Ylä-Herttuala S. Biochemistry of the arterial wall in developing atherosclerosis. Ann. N.Y. Acad. Sci. 1991;623:40–59. doi: 10.1111/j.1749-6632.1991.tb43717.x. [DOI] [PubMed] [Google Scholar]
  • 42.Wagner W.D., St. Clair R.W., Clarkson T.B. Angiochemical and tissue cholesterol changes in Macaca fascicularis fed an atherogenic diet for 3 years. Exp. Mol. Pathol. 1978;28:140–153. doi: 10.1016/0014-4800(78)90047-3. [DOI] [PubMed] [Google Scholar]
  • 43.Weingand K.W., Clarkson T.B., Adams M.R., Bostrom A.D. Effects of age and/or puberty on coronary artery atherosclerosis in cynomolgus monkeys. Atherosclerosis. 1986;62:137–144. doi: 10.1016/0021-9150(86)90059-6. [DOI] [PubMed] [Google Scholar]
  • 44.Clarkson T.B., Adams M.R., Williams J.K., Wagner J.D. Clinical implications of animal models of gender difference in heart disease. In: Douglas P.S., editor. Cardiovascular Health and Disease in Women. Philadelphia: W.B. Saunders Company; 1993. pp. 283–304. [Google Scholar]
  • 45.Clarkson T.B. Personality; gender and coronary artery atherosclerosis of monkeys. Arteriosclerosis. 1987;7:1–8. doi: 10.1161/01.atv.7.1.1. [DOI] [PubMed] [Google Scholar]
  • 46.Adams M.R., Kaplan J.R., Manuck S.B., Koritnik D.R., Parks J.S., et al. Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone. Arteriosclerosis. 1990;10:1051–1057. doi: 10.1161/01.atv.10.6.1051. [DOI] [PubMed] [Google Scholar]
  • 47.Barrett-Connor E., Bush T.L. Estrogen and coronary heart disease in women. JAMA. 1991;265:1861–1867. doi: 10.1001/jama.265.14.1861. [DOI] [PubMed] [Google Scholar]
  • 48.Wagner J.D., Clarkson T.B., St. Clair R.W., Schwenke D.C., Shively C.A., et al. Estrogen and progesterone replacement therapy reduces LDL accumulation in the coronary arteries of surgically postmenopausal cynomolgus monkeys. J. Clin. Invest. 1991;88:1995–2002. doi: 10.1172/JCI115526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Williams J.K., Adams M.R., Klopfenstein H.S. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation. 1990;81:1680–1687. doi: 10.1161/01.cir.81.5.1680. [DOI] [PubMed] [Google Scholar]
  • 50.Bowness J.M. Atherosclerosis and aging of the arterial wall. Can. Med. Assoc. J. 1992;147:201. [PMC free article] [PubMed] [Google Scholar]
  • 51.Masoro E.J. Physiological system markers of aging. Exp. Gerontol. 1988;23:391–394. doi: 10.1016/0531-5565(88)90043-5. [DOI] [PubMed] [Google Scholar]
  • 52.Nakamura H., Izumiyama N., Nakamura K.I., Ohtsubo K. Age-associated ultrastructural changes in the aortic intima of rats with diet-induced hypercholesterolemia. Atherosclerosis. 1989;79:101–111. doi: 10.1016/0021-9150(89)90114-7. [DOI] [PubMed] [Google Scholar]
  • 53.Baker G.T., Sprott R.L. Biomarkers of aging. Exp. Gerontol. 1988;23:223–239. doi: 10.1016/0531-5565(88)90025-3. [DOI] [PubMed] [Google Scholar]
  • 54.Cerami A., Vlassara H., Brownlee M. Protein glycosylation and the pathogenesis of atherosclerosis. Metabolism. 1985;34(Suppl1):37–44. doi: 10.1016/s0026-0495(85)80008-1. [DOI] [PubMed] [Google Scholar]
  • 55.Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am. J. Clin. Nutr. 1956;4:20–34. doi: 10.1093/ajcn/4.1.20. [DOI] [PubMed] [Google Scholar]
  • 56.Lapidus L., Bengtsson C., Larsson B., Pennert K., Rybo E., et al. Distribution of adipose tissue and risk of cardiovascular disease and death. Br. Med. J. 1984;289:1257–1261. doi: 10.1136/bmj.289.6454.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Larsson B., Svardsudd K., Welin L., Wilhelmsen L., Björntorp P., et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br. Med. J. 1984;288:1401–1404. doi: 10.1136/bmj.288.6428.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Stokes J., III, Garrison R.J., Kannel W.B. The independent contributions of various indices of obesity to the 22-year incidence of coronary heart disease: The Framingham Heart Study. In: Vague J., editor. Metabolic Complications of Human Obesities. Amsterdam: Elsevier Science Publishers; 1985. pp. 49–57. [Google Scholar]
  • 59.Ducimetiere P., Richard J., Cambien F. The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease. Int. J. Obesity. 1986;10:229–240. [PubMed] [Google Scholar]
  • 60.Gillum R.F. The association of body fat distribution with hypertension, hypertensive heart disease, coronary heart disease, diabetes and cardiovascular risk factors in men and women aged 18–79 years. J. Chron. Dis. 1987;40:421–428. doi: 10.1016/0021-9681(87)90175-5. [DOI] [PubMed] [Google Scholar]
  • 61.Haffner S.M., Fong D., Hazuda H.P., Pugh J.A., Patterson J.K. Hyperinsulinemia, upper body adiposity and cardiovascular risk factors in nondiabetics. Metabolism. 1988;37:338–345. doi: 10.1016/0026-0495(88)90133-3. [DOI] [PubMed] [Google Scholar]
  • 62.Folsom A.R., Burke G.L., Ballew C., Jacobs D.R., Haskell W.L., et al. Relation of body fatness and its distribution to cardiovascular risk factors in young blacks and whites. The role of insulin. Am. J. Epidemiol. 1989;130:911–924. doi: 10.1093/oxfordjournals.aje.a115424. [DOI] [PubMed] [Google Scholar]
  • 63.Ostlund R.E., Jr., Staten M., Kohrt W.M., Schultz J., Malley M. The ratio of waist-to-hip circumference, plasma insulin level, and glucose intolerance as independent predictors of the HDL-cholesterol level in older adults. N. Engl. J. Med. 1990;322:229–234. doi: 10.1056/NEJM199001253220404. [DOI] [PubMed] [Google Scholar]
  • 64.Enzi G., Gasparo M., Biodetti P.R., Fiore D., Semisa M., et al. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am. J. Clin. Nutr. 1986;44:739–746. doi: 10.1093/ajcn/44.6.739. [DOI] [PubMed] [Google Scholar]
  • 65.Baumgartner R.N., Heymsfield S.B., Roche A.F., Bernardino M. Abdominal composition quantified by computed tomography. Am. J. Clin. Nutr. 1988;48:936–945. doi: 10.1093/ajcn/48.4.936. [DOI] [PubMed] [Google Scholar]
  • 66.Peiris A.N., Sothmann M.S., Hoffmann R.G., Hennes M.I., Wilson C.R., et al. Adiposity, fat distribution, and cardiovascular risk. Ann. Intern. Med. 1989;110:867–872. doi: 10.7326/0003-4819-110-11-867. [DOI] [PubMed] [Google Scholar]
  • 67.Shimokata H., Muller D.C., Fleg J.L., Sorkin J., Ziemba A.W., et al. Age as an independent determinant of glucose tolerance. Diabetes. 1991;40:44–51. doi: 10.2337/diab.40.1.44. [DOI] [PubMed] [Google Scholar]
  • 68.Zavaroni I., Dall’Aglio E., Bruschi F., Bonora E., Alpi O., et al. Effect of age and environmental factors on glucose tolerance and insulin secretion in a worker population. J. Am. Geriatr. Soc. 1986;34:271–275. doi: 10.1111/j.1532-5415.1986.tb04223.x. [DOI] [PubMed] [Google Scholar]
  • 69.Rowe J.W., Minaker K.L., Pallotta J.A., Flier J.S. Characterization of insulin resistance of aging. J. Clin. Invest. 1983;71:1581–1587. doi: 10.1172/JCI110914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.DeFronzo R.A. Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes. 1979;28:1095–1101. doi: 10.2337/diab.28.12.1095. [DOI] [PubMed] [Google Scholar]
  • 71.Stout R.W. Insulin and atheroma: 20-year perspective. Diabetes Care. 1990;13:631–654. doi: 10.2337/diacare.13.6.631. [DOI] [PubMed] [Google Scholar]
  • 72.Stout R.W. Hyperinsulinemia and atherosclerosis. Diabetes. 1996;45(Suppl3):S45–S46. doi: 10.2337/diab.45.3.s45. [DOI] [PubMed] [Google Scholar]
  • 73.DeFronzo R.A., Ferrannini E. Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–194. doi: 10.2337/diacare.14.3.173. [DOI] [PubMed] [Google Scholar]
  • 74.Ross R. The pathology of atherosclerosis: An update. N. Engl. J. Med. 1986;314:488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  • 75.Coon P.J., Rogus E.M., Drinkwater D., Muller D.C., Goldberg A.P. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. J. Clin. Endocrinol. Metab. 1992;75:1125–1132. doi: 10.1210/jc.75.4.1125. [DOI] [PubMed] [Google Scholar]
  • 76.Kohrt W.M., Kirwan J.P., Staten M.A., Bourey R.E., King D.S. Insulin resistance in aging is related to abdominal obesity. Diabetes. 1993;42:273–281. [PubMed] [Google Scholar]
  • 77.Matsuzawa Y., Shimomura I., Nakamura T., Keno Y., Kotani K., et al. Pathophysiology and pathogenesis of visceral fat obesity. Obesity Res. 1995;3(Suppl2):187S–194S. doi: 10.1002/j.1550-8528.1995.tb00462.x. [DOI] [PubMed] [Google Scholar]
  • 78.Fujioka S., Matsuzawa Y., Tokunaga K., Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36:54–59. doi: 10.1016/0026-0495(87)90063-1. [DOI] [PubMed] [Google Scholar]
  • 79.Cefalu W.T., Wang Z.Q., Werbel S., Bell-Farrow A., Crouse J.R., III, et al. Contribution of visceral fat mass to the insulin resistance of aging. Metabolism. 1995;44:954–959. doi: 10.1016/0026-0495(95)90251-1. [DOI] [PubMed] [Google Scholar]
  • 80.Cerami A. Hypothesis: Glucose as a mediator of aging. J. Am. Geriatr. Soc. 1985;33:626–634. doi: 10.1111/j.1532-5415.1985.tb06319.x. [DOI] [PubMed] [Google Scholar]
  • 81.Baynes J.W., Monnier V.M., editors. The Maillard reaction in aging, diabetes and nutrition. New York: Alan R. Liss; 1989. [Google Scholar]
  • 82.Pongor S., Uldch P.C., Benath F.A., Cerami A. Aging of proteins: Isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc. Natl. Acad. Sci. U.S.A. 1984;81:2684–2688. doi: 10.1073/pnas.81.9.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Reynolds T.M. Chemistry of nonenzymatic browning II. Adv. Food Res. 1965;14:167–283. doi: 10.1016/s0065-2628(08)60149-4. [DOI] [PubMed] [Google Scholar]
  • 84.Monnier V.M., Kohn R.R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 1984;81:583–587. doi: 10.1073/pnas.81.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Hoduchi S., Higashi T., Ikeda K., Saishoji T., Jinnouchi Y., et al. Advanced glycation end products and their recognition by macrophage and macrophage-derived cells. Diabetes. 1996;45(Suppl3):S73–S76. doi: 10.2337/diab.45.3.s73. [DOI] [PubMed] [Google Scholar]
  • 86.Schmidt A.M., Hod O., Cao R., Yan S.D., Brett J., et al. A novel cellular receptor for advanced glycation end products. Diabetes. 1996;45(Suppl3):S77–S80. doi: 10.2337/diab.45.3.s77. [DOI] [PubMed] [Google Scholar]
  • 87.Vlassara H., Bucala R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end products receptors. Diabetes. 1996;45(Suppl3):S65–S66. doi: 10.2337/diab.45.3.s65. [DOI] [PubMed] [Google Scholar]
  • 88.Cerami A., Vlassara H., Brownlee M. Protein glycosylation and the pathogenesis of atherosclerosis. Metabolism. 1985;34(Suppl1):37–44. doi: 10.1016/s0026-0495(85)80008-1. [DOI] [PubMed] [Google Scholar]
  • 89.Steinberg D. Lipoproteins and atherosclerosis: A look back and a look ahead. Arteriosclerosis. 1983;3:283–301. doi: 10.1161/01.atv.3.4.283. [DOI] [PubMed] [Google Scholar]
  • 90.Smith E.B. The relation between plasma and tissue lipids in human atherosclerosis. Adv. Lipid Res. 1974;12:1–49. doi: 10.1016/b978-0-12-024912-1.50008-9. [DOI] [PubMed] [Google Scholar]
  • 91.Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low density lipoprotein. Diabetes. 1985;34:938–941. doi: 10.2337/diab.34.9.938. [DOI] [PubMed] [Google Scholar]
  • 92.Jen K.L.C., Hansen B.C., Metzger B.I. Adiposity, anthropometric measures and plasma insulin levels of rhesus monkeys. Int. J. Obesity. 1985;9:213–224. [PubMed] [Google Scholar]
  • 93.Kemnitz J.W., Goy R.W., Flitsch T.J., Lohmiller J.J., Robinson J.A. Obesity in male and female rhesus monkeys: Fat distribution, glucoregulation and serum androgen levels. J. Clin. Endocrinol. Metab. 1989;69:287–293. doi: 10.1210/jcem-69-2-287. [DOI] [PubMed] [Google Scholar]
  • 94.Shively C.A., Clarkson T.B., Miller L.C., Weingand K.W. Body fat distribution as a risk factor for coronary artery atherosclerosis in female cynomolgus monkeys. Arteriosclerosis. 1987;7:226–231. doi: 10.1161/01.atv.7.3.226. [DOI] [PubMed] [Google Scholar]
  • 95.Shively C.A., Clarkson T.B. Regional obesity and coronary artery atherosclerosis in females: a nonhuman primate model. Acta Med. Scand. 1988;723(Suppl):71–78. doi: 10.1111/j.0954-6820.1987.tb05930.x. [DOI] [PubMed] [Google Scholar]
  • 96.Wagner J.D., Martino M.A., Jayo M.J., Anthony M.S., Clarkson T.B., et al. The effects of hormone replacement therapy on carbohydrate metabolism and cardiovascular risk factors in surgically postmenopausal cynomolgus monkeys. Metabolism Clin. Exp. 1996;45:1254–1262. doi: 10.1016/s0026-0495(96)90244-9. [DOI] [PubMed] [Google Scholar]
  • 97.Wagner J.D., Carlson C.S., O’Brien T.D., Anthony M.S., Bullock B.C., et al. Diabetes mellitus and islet amyloidosis in cynomolgus monkeys. Lab. Anita Sci. 1996;46:36–41. [PubMed] [Google Scholar]
  • 98.Hansen B.C., Bodkin N.L. Heterogeneity of insulin responses: Phases leading to type 2 (non-insulin-dependent) diabetes mellitus in the rhesus monkey. Diabetologia. 1986;29:713–719. doi: 10.1007/BF00870281. [DOI] [PubMed] [Google Scholar]
  • 99.Howard C.F., Yasuda M. Diabetes mellitus in nonhuman primates: Recent research advances and current husbandry practices. J. Med. Primatol. 1990;19:609–625. [PubMed] [Google Scholar]
  • 100.Wagner J.D., Bagdade J.D., Litwak K.N., Zhang L., Bell-Farrow A.D., et al. Increased glycation of plasma lipoproteins in diabetic cynomolgus monkeys. Lab. Anim. Sci. 1996;46:31–35. [PubMed] [Google Scholar]
  • 101.Harano Y., Kojima H., Kosugi K., Suzuki M., Harada M., et al. Hyperlipidemia and atherosclerosis in experimental insulinopenic diabetic monkeys. Diabetes. 1992;16:163–173. doi: 10.1016/0168-8227(92)90113-6. [DOI] [PubMed] [Google Scholar]
  • 102.Lehner N.D.M., Clarkson T.B., Lofland H.B. The effect of insulin deficiency, hypothyroidism, and hypertension on atherosclerosis in the squirrel monkey. Exp. Mol. Pathol. 1971;15:230–244. doi: 10.1016/0014-4800(71)90102-X. [DOI] [PubMed] [Google Scholar]
  • 103.Howard C.F., Vesselinovitch D., Wissler R.W. Correlations of aortic histology with gross aortic atherosclerosis and metabolic measurements in diabetic and nondiabetic Macaca nigra. Atherosclerosis. 1984;52:85–100. doi: 10.1016/0021-9150(84)90158-8. [DOI] [PubMed] [Google Scholar]
  • 104.Nishimoto S., Oohara T., Sakai M., Igaki N., Masuta S., et al. Collagen-glycation in the aorta: A developmental factor of aging and atherosclerosis. Kobe J. Med. Sci. 1988;34:179–187. [PubMed] [Google Scholar]
  • 105.Ingram D.K., Cutler R.G., Weindruch R., Renquist D.M., Knapka J.J., et al. Dietary restriction and aging: The initiation of a primate study. J. Gerontol. 1990;45:148–163. doi: 10.1093/geronj/45.5.b148. [DOI] [PubMed] [Google Scholar]
  • 106.Kemnitz J.E., Weindruch R., Roecker E.B., Crawford K., Kaufman P.L., et al. Dietary restriction of adult male Rhesus monkeys: Design, methodology, and preliminary findings from the first year of study. J. Gerontol. 1993;48:B17–B26. doi: 10.1093/geronj/48.1.b17. [DOI] [PubMed] [Google Scholar]
  • 107.Weindruch R., Walford R.I. The retardation of aging and disease by dietary restriction. Springfield, Illinois: Charles C. Thomas; 1988. [Google Scholar]
  • 108.Snyder D.L., editor. Dietary restriction and aging. New York: Alan R. Liss, Inc.; 1989. [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES