Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2004 Sep;30(3):203–226. doi: 10.1023/B:JOBP.0000046728.51620.14

A Model of Sequence-Dependent Protein Diffusion Along DNA

Maria Barbi 1,2, Christophe Place 3, Vladislav Popkov 4,5, Mario Salerno 1
PMCID: PMC3456087  PMID: 23345869

Abstract

We introduce a probabilistic model for protein sliding motion along DNA during the search of a target sequence. The model accounts for possible effects due to sequence-dependent interaction between the nonspecific DNA and the protein. Hydrogen bonds formed at the target site are used as the main sequence-dependent interaction between protein and DNA. The resulting dynamical properties and the possibility of an experimental verification are discussed in details. We show that, while at large times the process reaches a linear diffusion regime, it initially displays a sub-diffusive behavior. The sub-diffusive regime can last sufficiently long to be of biological interest.

Keywords: anomalous diffusion, DNA-protein interaction, dynamical models, sliding, target site

Full Text

The Full Text of this article is available as a PDF (364.3 KB).

References

  • 1.Riggs A.D., Bourgeois S., Cohn M. The Lac Repressor-Operator Interaction. 3 Kinetic Studies. J. Mol. Biol. 1970;53:401. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  • 2.Berg O.G., Winter R.B., von Hippel P.H. Diffusion-Driven Mechanisms of Protein Translo-cation on Nucleic Acids. 1. Models and Theory. Biochemistry. 1981;20:6929. doi: 10.1021/bi00527a028. [DOI] [PubMed] [Google Scholar]
  • 3.Reich N.O., Mashhoon N. Kinetic Mechanism of the EcoRI DNA Methyltransferase. Biochemistry. 1991;30:2933. doi: 10.1021/bi00225a029. [DOI] [PubMed] [Google Scholar]
  • 4.Surby M.A., Reich N.O. Contribution of Facilitated Diffusion and Processive Catalysis to Enzyme Efficiency: Implications for the EcoRI restriction-modification system. Biochemistry. 1996;35:2201. doi: 10.1021/bi951883n. [DOI] [PubMed] [Google Scholar]
  • 5.Shimamoto N. One Dimensional Diffusion of Proteins Along DNA: Its biological and chemical significance revealed by single-molecule measurements. J. Biol. Chem. 1999;274:15293. doi: 10.1074/jbc.274.22.15293. [DOI] [PubMed] [Google Scholar]
  • 6.von Hippel P.H., Berg O.G. Facilitated Target Location in Biological Systems. J. Biol. Chem. 1989;264:675. [PubMed] [Google Scholar]
  • 7.von Hippel P.H., Rees W.A., Rippe K., Wilson K.S. Specificity Mechanisms in the Control of Transcription. Biophys. Chem. 1996;59:231. doi: 10.1016/0301-4622(96)00006-3. [DOI] [PubMed] [Google Scholar]
  • 8.Park C.S., Wu F.Y., Wu C.W. Molecular Mechanism of Promoter Selection in Gene Transcription. II. J. Biol. Chem. 1982;257:6950. [PubMed] [Google Scholar]
  • 9.Kabata H., Kurosawa O., Arai I., Washizu M., Margarson S.A., Glass R.E., Shimamoto N. Visualisation of Single Molecules of RNA Polymerase Sliding along DNA. Science. 1993;262:1561. doi: 10.1126/science.8248804. [DOI] [PubMed] [Google Scholar]
  • 10.Harada Y., Funatsu T., Murakami K., Nonoyama Y., Ishihama A., Yanagida T. Single-Molecule Imaging of RNA Polymerase-DNA Interactions in real time. Biophys. J. 1999;76:709. doi: 10.1016/S0006-3495(99)77237-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Guthold M., Zhu X., Rivetti C., Yang G., Thomson N.H., Kasas S., Hansma H.G., Smith B., Hansma N.K., Bustamante C. Direct Observation of One-Dimensional Diffusion and Transcription by Escherichia Coli RNA polymerase. Biophys. J. 1999;77:2284. doi: 10.1016/S0006-3495(99)77067-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Stanford N.P., Szczelkun M.D., Marko J.F., Halford S.E. One-and Three-Dimensional Pathways for Proteins to Reach Specific DNA Sites. EMBO J. 2000;19:6546. doi: 10.1093/emboj/19.23.6546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Salerno M. Discrete Model for DNA Promoters Dynamics. Phys. Rev. A. 1991;44:5292. doi: 10.1103/physreva.44.5292. [DOI] [PubMed] [Google Scholar]
  • 14.Salerno M. Nonlinear Dynamics of Plasmid pbr322 Promoter. In: Peyrard M., editor. Nonlinear Excitations in Biomolecules. Edition de Physique. New York: Springer; 1995. p. 147. [Google Scholar]
  • 15.Jlicher F., Bruinsma R. Motion of RNA Polymerase Along DNA: A stochastic model. Biophys. J. 1997;74:1169. doi: 10.1016/S0006-3495(98)77833-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Seeman N.C., Rosenberg J.M., Rich A. Sequence-Specific Recognition of Double Helical Nucleic Acids by Proteins. Proc. Natl. Acad. Sci. USA. 1976;73:804. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Travers A. DNA-Protein Interactions. London: Chapman and Hall; 1993. [Google Scholar]
  • 18.Spolar R.S., Record M.T., Jr. Coupling of Local Folding to Site-Specific Binding of Proteins to DNA. Science. 1994;263:777. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  • 19.deHaseth, P.L., Lohman, T.M. and Jr. Record, M.T.: Nonspecific Interaction of Lac Repressor with DNA: An Association Reaction Driven by Counterion Release. Biochemistry, 16 (1977), 4783. [DOI] [PubMed]
  • 20.Sidorova N.Y., Rau D.C. Linkage of EcoRI Dissociation from its Specific DNA Recognition Site to Water Activity, salt concentration, and pH: Separating their roles in specific and non-specific binding. J. Mol. Biol. 2001;310:801. doi: 10.1006/jmbi.2001.4781. [DOI] [PubMed] [Google Scholar]
  • 21.Singer P.T., Wu C.W. Kinetics of Promoter Search by Escherichia Coli RNA Polymerase. Effects of Monovalent and Divalent Cations and Temperature. J. Biol. Chem. 1988;263:4208. [PubMed] [Google Scholar]
  • 22.Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Pausing of the Restriction Endonu-clease EcoRI During Linear Diffusion on DNA. Biochemistry. 1994;33:10215. doi: 10.1021/bi00200a001. [DOI] [PubMed] [Google Scholar]
  • 23.Katouzian-Safadi M., Blazy B., Cremet J.Y., Le Caer J.P., Rossier J., Charlier M. Photo-Cross-Linking of CRP to Nonspecific DNA in the Absence of cAMP. DNA Interacts with both the N-and c-Terminal Parts of the Protein. Biochemistry. 1993;32:1770. doi: 10.1021/bi00058a010. [DOI] [PubMed] [Google Scholar]
  • 24.Schick C., Martin C.T. Tests of a Model of Specific Contacts in T7 RNA Polymerase-Promoter Interactions. Biochemistry. 1995;34:666. doi: 10.1021/bi00002a034. [DOI] [PubMed] [Google Scholar]
  • 25.Li T., Hung Ho H., Maslak M., Schick C., Martin C.T. Major Groove Recognition Elements in the Middle of the T7 RNA Polymerase Promoter. Biochemistry. 1996;35:3722. doi: 10.1021/bi9524373. [DOI] [PubMed] [Google Scholar]
  • 26.Cheetam G.T., Jeruzalemi D., Steitz T.A. Structural Basis for Initiation of Transcription from an RNA Polymerase-Promoter Complex. Nature. 1999;399:80. doi: 10.1038/19999. [DOI] [PubMed] [Google Scholar]
  • 27.Imburgio D., Rong M., Ma K., McAllister W.T. Studies of Promoter Recognition and Start Site Selection by T7 RNA Polymerase using a Comprehensive Collection of Promoter Variants. Biochemistry. 2000;39:10419. doi: 10.1021/bi000365w. [DOI] [PubMed] [Google Scholar]
  • 28.Nadassy K., Wodak S.J., Janin J. Structural Features of Protein-Nucleic Acid Recognition Sites. Biochemistry. 1999;38:1999. doi: 10.1021/bi982362d. [DOI] [PubMed] [Google Scholar]
  • 29.Schurr J.M. The One-Dimensional Diffusion Coefficient of Proteins Absorbed on DNA; Hy-drodynamic Considerations. Biophys. Chem. 1979;9:413. [PubMed] [Google Scholar]
  • 30.Barbi, M., Popkov, V. and Salerno, M.: In preparation, 2004.
  • 31.Winter R.B., Berg O.G., von Hippel P.H. Diffusion Driven Mechanisms of Protein Translo-cation on Nucleic Acids. 3. the Escherichia Coli Lac-Operator Interaction: Kinetic Measurements and Conclusions. Biochemistry. 1981;20:6961. doi: 10.1021/bi00527a030. [DOI] [PubMed] [Google Scholar]
  • 32.Jack W.E., Terry B.J., Modrich P. Involvement of Outside DNA Sequences in the Major Kinetic Path by Which EcoRI Endonuclease Locates and Leaves its Recognition Sequence. Proc. Natl. Acad. Sci. USA. 1982;79:4010. doi: 10.1073/pnas.79.13.4010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ehbrecht H.J., Pingoud A., Urbanke C., Maass G., Gualerzi C. Linear Diffusion of Re-striction Endonucleases on DNA. J. Biol. Chem. 1985;260:6160. [PubMed] [Google Scholar]
  • 34.Dowd D.R., Lloyd R.S. Biological Significance of Facilitated Diffusion in Protein-DNA Interactions. Applications to t4 Endonuclease V-Initiated DNA Repair. J. Biol. Chem. 1990;265:3424. [PubMed] [Google Scholar]
  • 35.Stanford N.P., Szczelkun M.D., Marko J.F., Halford S.E.Contribution offacilitated Dif-fusion and Processive Catalysis to Enzyme Efficiency: Implications for the EcoRI Restriction-Modification System EMBO J. 200019654611101527 [Google Scholar]
  • 36.Heslot, F.: Oral communication, Meeting "DNA in chromatin," Arcachon, France. 2002.
  • 37.Baumann, C.G.: Oral Communication, Meeting "DNA in Chromatin," Arcachon, France. 2002.
  • 38.Place, C.: Personal Communication. See also [44], 2002.
  • 39.Park C.S., Hillel Z., Wu C.W. Molecular Mechanism of Promoter Selection in Gene Tran-scription. I Development of a Rapid Mixing-Photocross Linking Technique to Study the Kinet-ics of Escherichia Coli RNA Polymerase Binding to T7 DNA. J. Biol. Chem. 1982;257:6944. [PubMed] [Google Scholar]
  • 40.Fried M.G., Crothers D.M. Kinetics and Mechanism in the Reaction of Gene Regulatory Proteins with DNA. J. Mol. Biol. 1984;172:263. doi: 10.1016/s0022-2836(84)80026-1. [DOI] [PubMed] [Google Scholar]
  • 41.McAllister W.T. Transcription by T7 RNA Polymerase. In: Eckstein F., Lilley D. M. J., editors. Mechanisms of Transcription. Berlin and Heidelberg: Springer; 1997. p. 15. [Google Scholar]
  • 42.¯Ujv¯ari A., Martin C.T. Identification of a Minimal Binding Element within the T7 RNA Polymerase Promoter. J. Mol. Biol. 1997;273:775. doi: 10.1006/jmbi.1997.1350. [DOI] [PubMed] [Google Scholar]
  • 43.Goodsell D.S. A Look Inside the Living Cell. Amer. Scientist. 1992;80:457. [Google Scholar]
  • 44.Gueroui Z., Place C., Freyssingeas E., Berge B. Observation by Fluorescence Microscopy of Transcription on Single Combed DNA. Proc. Natl. Acad. Sci. USA. 2002;99:6005. doi: 10.1073/pnas.092561399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES