Abstract
Equilibrium shapes of vesicles composed of a mixture of partially miscible amphiphiles are investigated. To take into account the influences of the composition, a simple phenomenological coupling between the co mposition and the curvatures, including the mean curvature and the Gauss curvature of the membrane surface, is suggested. By minimizing the potential functional, the general shape equation is obtained and solved analytically for vesicles with simple shapes. Besides, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are put forward. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. The close relations between the predictions and existing experimental phenomena published recently are shown.
Keywords: amphiphile, geometrically permissible condition, lipid bilayer, shape equation, vesicles
Full Text
The Full Text of this article is available as a PDF (185.6 KB).
References
- Canham P.B. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Theor. Biol. 1970;26:61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
- Helfrich W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch.C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
- Deuling H.J., Helfrich W. The Curvature Elasticity of Fluid Membranes: A Catalogue of Vesicle Shapes. J. Phys. France. 1976;37:1335–1345. [Google Scholar]
- Seifert U., Berndl K., Lipowsky R. Shape Transformations of Vesicles: Phase Diagrams for Spontaneous Curvature and Bilayer-Coupling Models. Phys. Rev. A. 1991;44:1182–1202. doi: 10.1103/PhysRevA.44.1182. [DOI] [PubMed] [Google Scholar]
- Leibler S. Curvature Instability in Membranes. J. Phys. France. 1986;47:507–516. [Google Scholar]
- Seifert U. Configurations of Fluid Membranes and Vesicles. Adv. Phys. 1997;46:13–137. [Google Scholar]
- Taniguchi T., Kawasaki K., Andlman D., Kawakatsu T. Equilibrium Shape Deformations of Two-Component Vesicles. J. Phys. II. France. 1994;4:1333–1362. doi: 10.1051/jp2:1994203. [DOI] [Google Scholar]
- Chen C.-M., Higgs P.G., Mackintosh F.C. Theory of Fission for Two-Component Lipid Vesicles. Phys. Rev. Lett. 1997;79:1579–1582. doi: 10.1103/PhysRevLett.79.1579. [DOI] [Google Scholar]
- Deuling H.J., Helfrich W. Red Blood Cell Shapes as Explained on the Basis of Curvature Elasticity. Biophys. J. 1976;16:861–868. doi: 10.1016/S0006-3495(76)85736-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brochard F., DE Gennes P.G., Pfeuty P. Surface Tension and Deformations of Membrane Structures: Relation to Two-Dimensional Phase Transitions. J. Physique. 1976;37:1099–1104. [Google Scholar]
- Iglič A. A Possible Mechanism Determining the Stability of Spiculated Red Blood Cells. J. Biomech. 1997;30:35–40. doi: 10.1016/S0021-9290(96)00100-5. [DOI] [PubMed] [Google Scholar]
- Evans E., Rawicz W. Entropy-Driven Tension and Bending Elasticity in Condensed-Fluid Membranes. Phys. Rev. Lett. 1990;64:2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
- Fourcade B., Miao L., Rao M., Wortis M. Scaling Analysis of Narrow Necks in Curvature Models of Fluid Lipid-Bilayer Vesicles. Phys. Rev. E. 1994;49:5276–5286. doi: 10.1103/PhysRevE.49.5276. [DOI] [PubMed] [Google Scholar]
- Mutz M., Bensimon D. Observation of Toroidal Vesicles. Phys. Rev. A. 1991;43:4525–4527. doi: 10.1103/PhysRevA.43.4525. [DOI] [PubMed] [Google Scholar]
- Yin, Y., Chen, Y., Ni, D., Shi, H. and Fan, Q.: Shape Equations and Curvature Bifurcations Induced by Inhomogeneous Rigidities in Cell Membranes, J. Biomech (2004), in press. [DOI] [PubMed]
- Ou-Yang Z.-C., Helfrich W. Instability and Deformation of a Spherical Vesicle by Pressure. Phys. Rev. Lett. 1987;59:2486–2488. doi: 10.1103/PhysRevLett.59.2486. [DOI] [PubMed] [Google Scholar]
- Ou-Yang Z.-C., Helfrich W. Bending Energy of Vesicle Membranes: General Expressions for the First, Second and Third Variation of the Shape Energy and Applications to Spheres and Cylinders. Phys. Rev. A. 1989;39:5280–5288. doi: 10.1103/PhysRevA.39.5280. [DOI] [PubMed] [Google Scholar]
- Yin, Y.: Integral Theorems Based on A New Gradient Operator Derived from Biomembranes (Part II): Deduced Transformations and Applications, Tsinghua Science & Technology, 10(3) (2005), in press.
- Yin Y., Yin J. Geometrical Constraint Equations and Geometrically Permissible Phase Diagrams for Vesicles or Biomembranes. Chin. Phys. Lett. 2004;21:2057–2058. doi: 10.1088/0256-307X/21/10/054. [DOI] [Google Scholar]
- Ou-Yang Z.-C., Liu J.-X., Xie Y.-Z. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. Singapore: World Scientific; 1999. [Google Scholar]
- Saitoh, A., Takiguchi, K., Tanaka, Y. and Hotani, H.: Opening-up of Liposomal Membranes by Talin, Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 1026–1031. [DOI] [PMC free article] [PubMed]
- Yin, Y.: Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part II), Tsinghua Science & Technology, 10(3) (2005), in press.
