Abstract
The Coronary Artery Bypass Graft (CABG) yields excellent results and remains the modern standard of care for treatment of occlusive disease in the cardiovascular system. However, the development of anastomotic Intimal Hyperplasia (IH) and restenosis can compromise the medium-and-long term effects of the CABG. This problem can be correlated with the geometric configuration and hemodynamics of the bypass graft. A novel geometric configuration was proposed for the CABG with two symmetrically implanted grafts for the purpose of improving the hemodynamics. Physiological blood flows in two models of bypass grafts were simulated using numerical methods. One model was for the conventional bypass configuration with a single graft (1-way model); the other model was for the proposed bypass configuration with two grafts (2-way model). The temporal and spatial distributions of hemodynamics, such as flow patterns and Wall Shear Stress (WSS) in the vicinity of the distal anastomoses, were analyzed and compared. Calculation results showed that the 2-way model possessed favorable hemodynamics with uniform longitudinal flow patterns and WSS distributions, which could decrease the probability of restenosis and improve the effect of the surgical treatment. Concerning the limitations of the 2-way bypass grafts, it is necessary to perform animal experiments to verify the viability of this novel idea for the CABG.
Keywords: anastomosis, CABG, cardiovascular system, geometric configuration, hemodynamics, intimal hyperplasia, restenosis
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
References
- Hartman C.W., Kong Y., Margolis J.R. Aortocoronary Bypass Surgery: Correlation of Angiographic, Symptomatic and Functional Improvement at 1 year. Am. J. carodiol. 1976;37:352–357. doi: 10.1016/0002-9149(76)90283-6. [DOI] [PubMed] [Google Scholar]
- Hofer M., Rappitsch G., Perktold K., Trubel W., Schima H. Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomosis and Correlation to Intimal Hyperplasia. J. Biomech. 1996;29:1297–1308. doi: 10.1016/0021-9290(96)00036-X. [DOI] [PubMed] [Google Scholar]
- Ojha M. Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia. Circ. Res. 1994;74:1227–1231. doi: 10.1161/01.res.74.6.1227. [DOI] [PubMed] [Google Scholar]
- Sottiurai V.S., Yao J.S.T., Batson R.C., Sue S.L., Jones R. Nakamura YA. Distal anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis. Ann. Vasc. Surg. 1989;24:711–722. doi: 10.1016/S0890-5096(06)62381-9. [DOI] [PubMed] [Google Scholar]
- Hyun S., Kleinstreuer C., Archie J.P., Jr. Hemodynamics Analysis of Arterial Expansions with Implications to Thrombosis and Restenosis. Med. Eng. Phys. 2000;22:13–27. doi: 10.1016/S1350-4533(00)00006-0. [DOI] [PubMed] [Google Scholar]
- Glagov S. Intimal Hyperplasia, Vascular Modeling and the Restenosis Problem. Circulation. 1994;89:2888–2891. doi: 10.1161/01.cir.89.6.2888. [DOI] [PubMed] [Google Scholar]
- Bertolotti C., Deplano V., Fuseri J., Dupouy P. Numerical and Experimental Models of Post-Operative Realistic Flows in Stenosed Coronary Bypasses. J. Biomech. 2001;34:1049–1064. doi: 10.1016/S0021-9290(01)00027-6. [DOI] [PubMed] [Google Scholar]
- Buchanan J.R., Kleinstreuer C., Truskey G.A., Lei M. Relation Between Non-Uniform Hemodynamics and sites of Altered Permeability and Lesion Growth at the Rabbit Aorto-Celiac Junction. Atherosclerosis. 1999;143:27–40. doi: 10.1016/S0021-9150(98)00264-0. [DOI] [PubMed] [Google Scholar]
- Buchanan J.R., Kleinstreuer C. Simulation of Particle-Hemodynamics in a Partially Occluded Artery Segment with Implications to the Initiation of Microemboli and Secondary Stenoses. J. Biomech. Eng. 1998;120:446–454. doi: 10.1115/1.2798013. [DOI] [PubMed] [Google Scholar]
- Inzoli F., Migliavacca F., Pennati G. Numerical Analysis of Steady Flow in Aorto-Coronary Bypass 3-D Model. J. Biomech. Eng. 1996;118:172–179. doi: 10.1115/1.2795956. [DOI] [PubMed] [Google Scholar]
- Longest P.W., Kleinstreuer C. Particle-Hemodynamics Modeling of the Distal End-to-Side Femoral Bypass: Effects of Graft Caliber and Graft-End Cut. Med. Eng. Phys. 2003;25:843–858. doi: 10.1016/S1350-4533(03)00124-3. [DOI] [PubMed] [Google Scholar]
- Longest P.W., Kleinstreuer C. Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains. J. Biomech. 2003;36:421–430. doi: 10.1016/S0021-9290(02)00434-7. [DOI] [PubMed] [Google Scholar]
- Longest P.W., Kleinstreuer C., Archie J.P., Jr. Particle Hemodynamics Analysis of Miller Cuff Arterial Anastomosis. J. Vasc. Surg. 2003;38:1353–1362. doi: 10.1016/S0741-5214(03)00950-9. [DOI] [PubMed] [Google Scholar]
- Longest P.W., Kleinstreuer C. Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses. J. Biomech. Eng. 2003;125:671–681. doi: 10.1115/1.1613298. [DOI] [PubMed] [Google Scholar]
- Longest P.W., Kleinstreuer C., Truskey G.A., Buchanan J.R. Relation Between Near-Wall Residence Times of Monocytes and Early Lesion Growth in the Rabbit Aorto-Celiac Junction. Ann. Biomed. Eng. 2003;31:53–64. doi: 10.1114/1.1531635. [DOI] [PubMed] [Google Scholar]
- Loth F., Jones S.A., Zarins C.K., Giddens D.P., Nassar R.F., Glagov S., Bassiouny H.S. Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses. J. Biomech. Eng. 2002;124:44–51. doi: 10.1115/1.1428554. [DOI] [PubMed] [Google Scholar]
- Bassiouny H.S., White S., Glagov S., Choi E., Giddens D.P., Zarins C.K. Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced. J. Vasc. Surg. 1992;15:708–717. doi: 10.1067/mva.1992.33849. [DOI] [PubMed] [Google Scholar]
- Wieslander J.B., Rausing A. A Histologic Comparison of Experimental Microarterial End-in-End (Sleeve) and End-to-End Anastomoses. Plast. Reconstr. Surg. 1984;73:279–287. doi: 10.1097/00006534-198402000-00024. [DOI] [PubMed] [Google Scholar]
- Ku D.N., Giddens D.P., Zarins C.K., Glagov S. Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress. Arteriosclerosis. 1985;5:293–302. doi: 10.1161/01.atv.5.3.293. [DOI] [PubMed] [Google Scholar]
- White C.R., Haidekker M., Bao X., Frangos J.A. Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation. Circulation. 2001;103:2508–2513. doi: 10.1161/01.cir.103.20.2508. [DOI] [PubMed] [Google Scholar]
- Goubergrits L., Affeld K., Wellnhofer E., Zurbrugg R., Holmer T. Estimation of Wall Shear Stress in Bypass Grafts with Computational Fluid Dynamics Method. Int. J. Artif. Organs. 2001;24:145–151. [PubMed] [Google Scholar]
- Clowes A.W., Gown A.M., Hanson S.R., Reidy M.A. Mechanisms of Arterial Graft Gailure. 1. Role of Cellular Proliferation in Early Healing of PTFE Prostheses. Am. J. Pathol. 1985;118:43–54. [PMC free article] [PubMed] [Google Scholar]
- Ojha M., Ethier C.R., Johnston K.W., Cobbold R.S. Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model. J. Vasc. Surg. 1990;12:747–753. doi: 10.1067/mva.1990.24365. [DOI] [PubMed] [Google Scholar]
- Lei M., Kleinstreuer H.C., Archie J.P. Hemodytnamics Simulations and Computer-Aided Designs of G raft-Artery Junctions. J. Biomech. Eng. 1997;119:343–348. doi: 10.1115/1.2796099. [DOI] [PubMed] [Google Scholar]
- Bertolotti C., Deplano V. Three-Dimensional Numerical Simulations of Flow Through a Stenosed Coronary Bypass. J. Biomech. 2000;33:1011–1022. doi: 10.1016/S0021-9290(00)00012-9. [DOI] [PubMed] [Google Scholar]
- Henry F.S., Collins M.W., Hughes P.E. Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses. J. Biomech. Eng. 1996;118:302–310. doi: 10.1115/1.2796011. [DOI] [PubMed] [Google Scholar]
- Taylor R.S., Loh A., McFarland R.J., Cox M., Chester J.F. Improved Technique for Polyterafluoroethylence Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches. Br. J. Surg. 1992;79:348–354. doi: 10.1002/bjs.1800790424. [DOI] [PubMed] [Google Scholar]
- Moore J.A., Steinman D.A., Prakash S. A numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses. J. Biomech. Eng. 1999;121:265–272. doi: 10.1115/1.2798319. [DOI] [PubMed] [Google Scholar]
- Perktold K., Tatzl H., Rappitsch G. Flow Dynamic Effect of the Anastomotic Angle: A Numerical Study of Pulsatile Flow in Vascular Graft Anastomoses Models. Technol. Health. Care. 1994;1:197–207. doi: 10.3233/THC-1994-1302. [DOI] [PubMed] [Google Scholar]
- Kleinstreuer C., Lei M., Archie J.P., Jr. Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis. J. Biomech. 1996;29:1605–1614. doi: 10.1016/0021-9290(96)83730-4. [DOI] [PubMed] [Google Scholar]
- Cole J.S., Watterson J.K., O’Reilly M.J.G. Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis. Med. Eng. Phys. 2002;24:393–401. doi: 10.1016/S1350-4533(02)00038-3. [DOI] [PubMed] [Google Scholar]
- Miller J.H., Foreman R.K., Ferguson L., Farris I. Interposition Vein Cuff for Anastomosis of Prosthesis to Small Artery. Aust. N. Z. J. Surg. 1984;54:283–285. doi: 10.1111/j.1445-2197.1984.tb05318.x. [DOI] [PubMed] [Google Scholar]
- Bonert M., Myers J.G., Fremes S., Williams J., Ethier C.R. A Numerical Study of Blood Flow in Coronary Artery Bypass Graft Side-to-Side Anastomosis. Ann. Biomed. Eng. 2002;30:599–611. doi: 10.1114/1.1481052. [DOI] [PubMed] [Google Scholar]
- Kim Y.H., Chandran K.B., Bower T.J., Corson J.D. Flow Dynamics Across End-to-End Vascular Bypass Graft Anastomoses. Ann. Biomed. Eng. 1993;21:311–320. doi: 10.1007/BF02368624. [DOI] [PubMed] [Google Scholar]
- Sherwin S.J., Shah O., Doorly D.J., Perio J., Papaharrilaou Y., Watkins N., Caro C.G., Dumoulin C.L. The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis. J. Biomech. Eng. 2000;122:86–95. doi: 10.1115/1.429630. [DOI] [PubMed] [Google Scholar]
- Deplano V., Bertolotti C., Boiron C. Numerical Simulations of Unsteady Flows in a Stenosed Coronary Bypass Graft. Med. Biol. Eng. Comp. 2001;39:488–499. doi: 10.1007/BF02345372. [DOI] [PubMed] [Google Scholar]
- Leuprecht A., Perktold K., Prosi M., Berk T., Trubel W., Schima H. Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomosis of Bypass Grafts. J. Biomech. 2002;35:225–236. doi: 10.1016/S0021-9290(01)00194-4. [DOI] [PubMed] [Google Scholar]
- Hughes P.E., How T.W. Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis. J. Biomech. 1996;29:855–872. doi: 10.1016/0021-9290(95)00168-9. [DOI] [PubMed] [Google Scholar]
- Lei M., Giddens D.P., Jones S.A., Loth F., Bassiouny H. Pulsatile Flow in an End-to-Side Vascular Graft Model: Comparison of Computations with Experimental Data. J. Biomech. Eng. 2001;123:80–87. doi: 10.1115/1.1336145. [DOI] [PubMed] [Google Scholar]
- Noori N., Scherer R., Perktold K., Czerny M., Karner G., Trubel M., Polterauer P., Schima H. Blood Flow in Distal End-to-Side Anastomoses with PTFE and a Venous Patch: Results of an in vitro Flow Visualisation Study. Eur. J. Vasc. Endovasc. Surg. 1999;18:191–200. doi: 10.1053/ejvs.1998.0802. [DOI] [PubMed] [Google Scholar]
- Liu, Y., Qiao, A. and Gao, S.: Physiological Flow Simulation Of Coronary Bypass Graft. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Aug 24–29, 2003, Sydney, Australia, [CD-ROM] ISBN 1877040142, Paper No. 1840.
- Liu Y., Qiao A., Zhu H. Haemodynamics Simulation for Carotid Bifurcation. Chinese J. Biomed. Eng. 2003;12:17–24. [Google Scholar]
- Qiao A.K., Zeng Y.J., Xu X.H. Numerical Simulations of Stenosed Femoral Artery with Symmetric 2-Way Bypass Graft. Bio-Med. Mater. Eng. 2004;14:167–174. [PubMed] [Google Scholar]
- Perktold K., Rappitsch G. Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Biffercation Model. J. Biomech. 1995;28:845–856. doi: 10.1016/0021-9290(95)95273-8. [DOI] [PubMed] [Google Scholar]
- White S.S., Zarins C.K., Giddens D.P., Bassiouny H., Loth F., Jones S.A., Glagov S. Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length. J. Biomech. Eng. 1993;115:104–111. doi: 10.1115/1.2895456. [DOI] [PubMed] [Google Scholar]
- Anayiotos A.S., Pedroso P.D., Eleftheriou E.C., Venugopalan R., Holman W.L. Effect of a Flow-Streamlining Implant at the Distal Anastomosis of a Coronary Artery Bypass Graft. Ann. Biomed. Eng. 2002;30:917–926. doi: 10.1114/1.1500407. [DOI] [PubMed] [Google Scholar]
- Kute S.M., Vorp D.A. The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study. J. Biomech. Eng. 2001;123:277–283. doi: 10.1115/1.1374203. [DOI] [PubMed] [Google Scholar]
- Kleinstreuer C., Lei M., Archie J.P., Jr. Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft-Artery Connector. J. Biomech. Eng. 1996;118:506–510. doi: 10.1115/1.2796037. [DOI] [PubMed] [Google Scholar]
- Bryan A.J., Angelini G.D. The Biology of Saphenous Vein Graft Occlusion: Etiology and Strategies for Prevention. Curr. Opin. Cardiol. 1994;9:641–649. doi: 10.1097/00001573-199411000-00002. [DOI] [PubMed] [Google Scholar]
- Binns R.L., Ku D.N., Stewart M.T., Ansley J.P., Coyle K.A. Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing. J. Vasc. Surg. 1989;10:326–337. doi: 10.1067/mva.1989.13652. [DOI] [PubMed] [Google Scholar]
- Abbott W.M., Green R.M., Matsumato T., Wheeler J.R., Miller N., Veith F.J., Money S., Garrett H.E. Prosthetic Above-Knee Femoropopliteal Bypass Grafting: Results of a multi-Center Randomized Prospective Trial. J. Vasc. Surg. 1997;25:19–28. doi: 10.1016/s0741-5214(97)70317-3. [DOI] [PubMed] [Google Scholar]
- Qiao, A., Liu, Y. and Guo, Z.: Wall Shear Stresses in Small and Large 2-Way Bypass Grafts, Med. Eng. Phys., in press. [DOI] [PubMed]
- Sanders R.J., Kempczinski R.F., Hammond W., DiClementi D. The Significance of Graft Diameter. Surgery. 1980;88:856–866. [PubMed] [Google Scholar]
- Ballyk P., Steinman D.A., Ethier C.R. Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis. Biorheology. 1994;31:565–586. doi: 10.3233/bir-1994-31505. [DOI] [PubMed] [Google Scholar]