Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2003 Dec;29(4):429–446. doi: 10.1023/A:1027309113522

Physics of Ion Channels

Serdar Kuyucak 1, Turgut Bastug 1
PMCID: PMC3456178  PMID: 23345858

Abstract

We review the basic physics involved in transport of ions across membrane channels in cells. Electrochemical forces that control the diffusion of ions are discussed both from microscopic and macroscopic perspectives. A case is made for use of Brownian dynamics as the minimal phenomenological model that provides a bridge between experiments and more fundamental theoretical approaches. Application of Brownian and molecular dynamics methods to channels with known molecular structures is discussed.

Keywords: Brownian dynamics, continuum theories, ion channels, molecular dynamics, permeation models

Full Text

The Full Text of this article is available as a PDF (130.9 KB).

Contributor Information

Serdar Kuyucak, Email: serdar.kuyucak@anu.edu.au.

Turgut Bastug, Email: turgut.bastug@anu.edu.au.

References

  • 1.Hille B. Ionic Channels of Excitable Membranes. 3rd ed. Sunderland, MA: Sinauer Associates; 2001. [Google Scholar]
  • 2.Berry R.S., Rice S.A., Ross J. Physical Chemistry. 2nd ed. New York: Oxford University Press; 2000. [Google Scholar]
  • 3.Davis M.E., McCammon J.A. Electrostatics in Biomolecular Structure and Dynamics. Chem. Rev. 1990;90:509–521. doi: 10.1021/cr00101a005. [DOI] [Google Scholar]
  • 4.Honig B., Nicholls A.Classical Electrostatics in Biology and Chemistry Science 19952681144–1149.1995Sci...268.1144H [DOI] [PubMed] [Google Scholar]
  • 5.Evans D.F., Wennerström H. The Colloidal Domain. 2nd ed. New York: Wiley-VCH; 1999. [Google Scholar]
  • 6.Levitt D.G. Interpretation of Biological Ion Channel Flux Data-Reaction-Rate versus Continuum Theory. Ann. Rev. Biophys. Biophys. Chem. 1986;15:29–57. doi: 10.1146/annurev.bb.15.060186.000333. [DOI] [PubMed] [Google Scholar]
  • 7.Eisenberg R.S. From Structure to Function in Open Ionic Channels. J. Membr. Biol. 1999;171:1–24. doi: 10.1007/s002329900554. [DOI] [PubMed] [Google Scholar]
  • 8.Moy G., Corry B., Kuyucak S., Chung S.H. Tests of Continuum Theories as Models of Ion Channels: I. Poisson-Boltzmann Theory versus Brownian Dynamics. Biophys. J. 2000;78:2349–2363. doi: 10.1016/S0006-3495(00)76780-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Corry B., Kuyucak S., Chung S.H. Tests of Continuum Theories as Models of Ion Channels: II. Poisson-Nernst-Planck Theory versus Brownian Dynamics. Biophys. J. 2000;78:2364–2381. doi: 10.1016/S0006-3495(00)76781-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Graf P., Nitzan A., Kurnikova M.G., Coalson R.D. A Dynamic Lattice Monte Carlo Model of Ion Transport in Inhomogeneous Dielectric Environments: Method and Implementation. J. Phys. Chem. B. 2000;104:12324–12338. doi: 10.1021/jp001282s. [DOI] [Google Scholar]
  • 11.Cooper K.E., Jakobsson E., Wolynes P. The Theory of Ion Transport through Membrane channels. Prog. Biophys. Mol. Biol. 1985;46:51–96. doi: 10.1016/0079-6107(85)90012-4. [DOI] [PubMed] [Google Scholar]
  • 12.Kuyucak S., Andersen O.S., Chung S.H.Models of Permeation in Ion Channels Rep. Prog. Phys. 2001641427–1472.2001RPPh...64.1427K 10.1088/0034-4885/64/11/202 [DOI] [Google Scholar]
  • 13.Roux B., Karplus M. Molecular Dynamics Simulations of the Gramicidin Channel. Ann. Rev. Biophys. Biomol. Struct. 1994;23:731–761. doi: 10.1146/annurev.bb.23.060194.003503. [DOI] [PubMed] [Google Scholar]
  • 14.Tieleman D.P., Biggin P.C., Smith G.R., Sansom M.S.P. Simulation Approaches to Ion Channel Structure-Function Relationships. Q. Rev. Biophys. 2001;34:473–561. doi: 10.1017/s0033583501003729. [DOI] [PubMed] [Google Scholar]
  • 15.Roux B. Theoretical and Computational Models of Ion Channels. Curr. Opin. Sruct. Biol. 2002;12:182–189. doi: 10.1016/S0959-440X(02)00307-X. [DOI] [PubMed] [Google Scholar]
  • 16.Urry D.W.The Gramicidin A Transmembrane Channel: A proposed πLD Helix Proc. Natl. Acad. Sci. USA 197168672–676.1971PNAS...68..672U 10.1073/pnas.68.3.672 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Partenskii M.B., Jordan P.C. Theoretical Perspectives on Ion-Channel Electrostatics: Continuum and Microscopic Approaches. Q. Rev. Biophys. 1992;25:477–510. doi: 10.1017/S0033583500004388. [DOI] [PubMed] [Google Scholar]
  • 18.Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R.The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity Science 199828069–77.1998Sci...280...69D 10.1126/science.280.5360.69 [DOI] [PubMed] [Google Scholar]
  • 19.Morais-Cabral J.H., Zhou Y., MacKinnon R.Energetic Optimization of Ion Conduction Rate by the K+ Selectivity Filter Nature 200141437–42.2001Natur.414...37M 10.1038/35102000 [DOI] [PubMed] [Google Scholar]
  • 20.Zhou Y., Morais-Cabral J.H., Kaufman A., MacKinnon R.Chemistry of Ion Coordination and Hydration revealed by a K+ Channel-Fab Complex at 2.0 Å Resolution Nature 200141443–48.2001Natur.414...43Z 10.1038/35102009 [DOI] [PubMed] [Google Scholar]
  • 21.Chang G., Spencer R.H., Lee A.T., Barclay M.T., Rees D.C.Structure of the MscL Homolog from Mycobacterium tuberculosis: A Gated Mechanosensitive Ion Channel Science 19982822220–2226.1998Sci...282.2220C 10.1126/science.282.5397.2220 [DOI] [PubMed] [Google Scholar]
  • 22.Dutzler R., Campbell E.B., Cadene M., Chait B.T., MacKinnon R.X-Ray Structure of a ClC Chloride Channel at 3.0 Å reveals the Molecular Basis of Anion Selectivity Nature 2002415287–294.2002Natur.415..287D 10.1038/415287a [DOI] [PubMed] [Google Scholar]
  • 23.Levitt D.G. Electrostatic Calculations for an Ion Channel. I. Energy and Potential Profiles and Interactions between Ions. Biophys. J. 1978;22:209–219. doi: 10.1016/S0006-3495(78)85485-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hoyles M., Kuyucak S., Chung S.H.Solutions of Poisson's Equation in Channel-Like Geometries Comput. Phys. Commun. 199811545–68.1001.6513116650731998CoPhC.115...45H 10.1016/S0010-4655(98)00090-3 [DOI] [Google Scholar]
  • 25.Jordan P.C. Electrostatic Modeling of Ion Pores. Energy Barriers and Electric Field Profiles. Biophys. J. 1982;39:157–164. doi: 10.1016/S0006-3495(82)84503-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kurnikova M.G., Coalson R.D., Graf P., Nitzan A. A Lattice Relaxation Algorithm for Three-Dimensional Poisson-Nernst-Planck Theory with Application to Ion Transport through the Gramicidin A Channel. Biophys. J. 1999;76:642–656. doi: 10.1016/S0006-3495(99)77232-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.van Gunsteren W.F., Berendsen H.J.C.Algorithms for Brownian Dynamics Mol. Phys. 198245637–647. 10.1080/002689782001004911982MolPh..45..637V [DOI] [Google Scholar]
  • 28.Hoyles M., Kuyucak S., Chung S.H.Computer Simulation of Ion Conductance in Membrane Channels Phys. Rev. E 1998583654–3661.1998PhRvE..58.3654H 10.1103/PhysRevE.58.3654 [DOI] [Google Scholar]
  • 29.Corry B., Hoyles M., Allen T.W., Walker M., Kuyucak S., Chung S.H. Reservoir Boundaries in Brownian Dynamics Simulations of Ion Channels. Biophys. J. 2002;82:1975–1984. doi: 10.1016/S0006-3495(02)75546-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Partenskii M.B., Dorman V., Jordan P.C. Influence of a Channel-Forming Peptide on Energy Barriers to Ion Permeation, viewed from a Continuum Dielectric Perspective. Biophys. J. 1994;67:1429–1438. doi: 10.1016/S0006-3495(94)80616-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Edwards S., Corry B., Kuyucak S., Chung S.H. Continuum Electrostatics fails to describe Ion Permeation in the Gramicidin Channel. Biophys. J. 2002;83:1348–1360. doi: 10.1016/S0006-3495(02)73905-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Smith G.R., Sansom M.S.P. Effective Diffusion Coefficients of K+ and Cl- Ions in Ion Channel Models. Biophys. Chem. 1999;79:129–151. doi: 10.1016/S0301-4622(99)00052-6. [DOI] [PubMed] [Google Scholar]
  • 33.Allen T.W., Kuyucak S., Chung S.H. Molecular Dynamics Estimates of Ion Diffusion in Model Hydrophobic and the KcsA Potassium Channels. Biophys. Chem. 2000;86:1–14. doi: 10.1016/S0301-4622(00)00153-8. [DOI] [PubMed] [Google Scholar]
  • 34.Andersen O.S., Koeppe R.E. Molecular Determinants of Channel Function. Physiol. Rev. 1992;72:89–158. doi: 10.1152/physrev.1992.72.suppl_4.S89. [DOI] [PubMed] [Google Scholar]
  • 35.Jordan P.C. Ion-Water and Ion-Polypeptide Correlations in a Gramicidin-Like Channel. Biophys. J. 1990;58:1133–1156. doi: 10.1016/S0006-3495(90)82456-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Chung S.H., Allen T.W., Hoyles M., Kuyucak S. Permeation of Ions across the Potassium Channel: Brownian Dynamics Studies. Biophys. J. 1999;77:2517–2533. doi: 10.1016/S0006-3495(99)77087-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Chung S.H., Allen T.W., Kuyucak S. Conducting-State Properties of the KcsA Potassium Channel fromMolecular and Brownian Dynamics Simulations. Biophys. J. 2002;82:628–645. doi: 10.1016/S0006-3495(02)75427-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Mashl R.J., Tang Y., Schnitzer J., Jakobsson E. Hierarchical Approach to Predicting Permeation in Ion Channels. Biophys. J. 2001;81:2473–2483. doi: 10.1016/S0006-3495(01)75893-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Allen T.W., Kuyucak S., Chung S.H. Molecular Dynamics Study of the KcsA Potassium Channel. Biophys. J. 1999;77:2502–2516. doi: 10.1016/S0006-3495(99)77086-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Åqvist J., Luzhkov V.Ion Permeation Mechanism of the Potassium Channel Nature 2000404881–884.2000Natur.404..881A 10.1038/35009114 [DOI] [PubMed] [Google Scholar]
  • 41.Bernéche S., Roux B. Molecular Dynamics of the KcsA K+ Channel in a Bilayer Membrane. Biophys. J. 2000;78:2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Guidoni L., Torre V., Carloni P.Water and Potassium Dynamics inside the KcsA K+ Channel FEBS Letters 200047737–42.2000PhLB..477...37A 10.1016/S0014-5793(00)01712-9 [DOI] [PubMed] [Google Scholar]
  • 43.Shrivastava I.H., Sansom M.S.P. Simulation of Ion Permeation through a Potassium Channel: Molecular Dynamics of KcsA in a Phospholipid Bilayer. Biophys. J. 2000;78:557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Chung S.H., Allen T.W., Kuyucak S. Modeling Diverse Range of Potassium Channels with Brownian Dynamics. Biophys. J. 2002;83:263–277. doi: 10.1016/S0006-3495(02)75167-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Bernéche S., Roux B.Energetics of Ion Conduction through the K+ Channel Nature 200141473–77.2001Natur.414...73B 10.1038/35102067 [DOI] [PubMed] [Google Scholar]
  • 46.Tsien R.W., Hess P., McCleskey E.W., Rosenberg R.L. Calcium Channels: Mechanisms of Selectivity, Permeation and Block. Ann. Rev. Biophys. Chem. 1987;16:265–290. doi: 10.1146/annurev.bb.16.060187.001405. [DOI] [PubMed] [Google Scholar]
  • 47.McCleskey E.W., Almers W.The Ca Channel in Skeletal Muscle is a Large Pore Proc. Natl. Acad. Sci. USA. 1985827149–7153.1985PNAS...82.7149M 10.1073/pnas.82.20.7149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Corry B., Allen T.W., Kuyucak S., Chung S.H. Mechanisms of Permeation and Selectivity in Calcium Channels. Biophys. J. 2001;80:195–214. doi: 10.1016/S0006-3495(01)76007-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Nonner W., Eisenberg B. Ion Permeation and Glutamate Residues linked by Poisson-Nernst-Planck Theory in L-Type Calcium Channels. Biophys. J. 1998;75:1287–1305. doi: 10.1016/S0006-3495(98)74048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Yang J., Ellinor P.T., Sather W.A., Zhang J.F., Tsien R.W.Molecular Determinants of Ca2+ Selectivity and Ion Permeation in L-Type Ca2+ Channels Nature 1993366158–161.1993Natur.366..158Y 10.1038/366158a0 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES