Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2000 Mar;26(1):27–41. doi: 10.1023/A:1005139631164

Synergetics of the Membrane Self-Assembly: A Micelle-to-Vesicle Transition

Alexey N Goltsov 1, Leonid I Barsukov 2
PMCID: PMC3456182  PMID: 23345710

Abstract

A model approach is developed to study intermediate steps and transientstructures in a course of the membrane self-assembly. The approach isbased on investigation of mixed lipid/protein-detergent systems capable ofthe temperature induced transformation from a solubilized micellar stateto closed membrane vesicles. We performed a theoretical analysis ofself-assembling molecular structures formed in binary mixtures ofdimyristoylphosphatidylcholine (DMPC) and sodium cholate (NaC). Thetheoretical model is based on the Helfrich theory of curvature elasticity,which relates geometrical shapes of the structures to their free energy inthe Ginzburg-Landau approximation. The driving force for the shapetransformation is spontaneous curvature of amphiphilic aggregates which isnonlinearly dependent on the lipid/detergent composition. An analysis ofthe free energy in the regular solution approximation shows that theformation of mixed structures of different shapes (discoidal micelles,rod-like micelles, multilayer membrane structures and vesicles) ispossible in a certain range of detergent/lipid ratios. A transition fromthe flat discoidal micelles to the rod-like cylindrical micelles isinduced by curvature instabilities resulting from acyl chain melting andinsertion of detergent molecules into the lipid phase. Nonideal mixing ofthe NaC and DMPC molecules results in formation of nonideal cylindricalaggregates with elliptical cross section. Further dissolution of NaCmolecules in DMPC may be accompanied with a change of their orientation inthe lipid phase and leads to temperature-induced curvature instabilitiesin the highly curved cylindrical geometry. As a result the rod-likemicelles fuse into less curved bilayer structures which transformeventually to the unilamellar and multilamellar membrane vesicles. Thetheoretical analysis performed shows that a sequence of shapetransformations in the DMPC/NaC mixed systems is determined by thesynergism of four major factors: detergent/lipid ratio, temperature (acylchain melting), DMPC and NaC mixing, and reorientation of NaC molecules inmixed aggregates.

Keywords: Micelle-to-vesicle transition, mixed lipid-detergent systems, Membrane self-assembly, solubilization and reconstitution of membranes

Full Text

The Full Text of this article is available as a PDF (176.7 KB).

References

  • 1.Lichtenberg D. Liposomes as a model for solubilization and reconstitution of membranes. In: Barenholz Y., Lasic D.D., editors. Handbook of nonmedical application in liposomes. New York: CRC Press; 1996. pp. 199–218. [Google Scholar]
  • 2.Lasch J. Interaction of detergents with lipid vesicles. Biochim. Biophys. Acta. 1995;1241:269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
  • 3.Silvius J.R. Solubilization and functional reconstitution of biomembrane components. Annu. Rev. Biophys. Biomol. Struct. 1992;21:323–348. doi: 10.1146/annurev.bb.21.060192.001543. [DOI] [PubMed] [Google Scholar]
  • 4.Lasic D.D. The mechanism of vesicle formation. Biochem. J. 1988;256:1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Fromherz P., Röcker C., Rüppel D. From discoid micelles to spherical vesicles. The concept of edge activity. Faraday Discuss. Chem. Soc. 1986;81:39–48. [Google Scholar]
  • 6.Schurtenberger P., Mazer N., Kanzig W. Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J. Phys. Chem. 1985;89:1042–1049. [Google Scholar]
  • 7.Polozova A.I., Dubachev G.E., Simonova T.N., Barsukov L.I. Temperature-induced micellar-lamellar transformation in binary mixtures of saturated phosphatidylcholines with sodium cholate. FEBS Letters. 1995;358:17–22. doi: 10.1016/0014-5793(94)01378-e. [DOI] [PubMed] [Google Scholar]
  • 8.Polozova A.I., Dubachev G.E., Simonova T.N., Barsukov L.I. Anomalous thermotropic behaviour of binary mixtures of saturated phosphatidylcholines with sodium cholate. Russian J. Bioorg. Chem. 1993;19:359–365. [Google Scholar]
  • 9.Inoue T., Motoyama R., Miyakawa K., Shimozawa R. Aggregation behaviour of hexaethylene glycol decyl ether/dipalmitoylphosphatidylcholine mixture in aqueous dispersion. J. Coll. Interface Sci. 1993;156:311–318. [Google Scholar]
  • 10.Inoue T., Kawamura H., Okukado S., Shimozawa R. Characterization of molecular assembles formed in aqueous C10E7/DPPC mixture by spin label and fluorescence probe techniques and mechanism of micelle-to-vesicle transformation. J. Coll. Interface Sci. 1994;168:94–102. [Google Scholar]
  • 11.Otten D., Löbbeck L., Beyer K. Stages of the bilayer-micelle transformation in the system phosphatidylcholine–C12E8 as studied by deuterium-and phosporus-NMR, light scattering, and calorimetry. Biophys. J. 1995;68:584–597. doi: 10.1016/S0006-3495(95)80220-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dubachev G.E., Polozova A.I., Simonova T.N., Borovyagin V.L., Demin V.V., Barsukov L.I. Electron microscopy investigation of intermediates at the temperature-induced micellevesicle transformation in the system of dimyristoylphosphatidylcholine with sodium cholate. Membr. and Cell Biol. 1996;10:105–114. [Google Scholar]
  • 13.Goltsov A.N., Kondrat'eva O.V., Barsukov L.I. Structural micelles-vesicles transition in mixed systems of dimyristoylphosphatidylcholine and sodium cholate. In: Lupichev L.N., editor. Nonlinear phenomena in open systems. Moscow: State Institute of Physics and Technology; 1997. pp. 87–101. [Google Scholar]
  • 14.Kiselev, M.A., Lesieur, P., Kisselev, A.M., Borbely, S., Simonova, T.N. and Barsukov, L.I.: Temperature-induced micelle to vesicle transition in the DMPD/NaC system: A small-angle scattering study, in Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research, Annual Report, Dubna, 1997, pp. 81–83.
  • 15.Kiselev, M.A., Lesieur, P., Kisselev, A.M., Kutuzov, S.A., Barsukov, L.I., Simonova, T.N., Gutherlet, T. and Krose, G.: Investigation of temperature-sensitive mixed lipid/detergent systems at YuMO spectrometer, in Proceeding of the German-Russian User Meeting: Condensed Matter Physics with Neutrons at IBR-2. Frank Laboratory of Neutron Physics, April 2–4, 1998, Dubna, pp. 52–57.
  • 16.Razinkov, V.I., Simonova, T.N., Molotkovsky, Y.G. and Barsukov, L.I.: Structural and dynamic aspects of the temperature-induced micelle-vesicle transition as studied by fluorescence spectroscopy, 1998 (in preparation).
  • 17.Andelman D., Kozlov M.M., Helfrich W. Phase transition between vesicles and micelles driven by competing curvatures. Europhys. Lett. 1994;25:231–236. [Google Scholar]
  • 18.Kozlov M.M., Lichtenberg D., Andelman D. Shape of phospholipid/surfactant mixed micelles: cylinder or disks? Theoretical analysis. J. Phys. Chem. 1997;101:6600–6606. [Google Scholar]
  • 19.Fattal D.R., Andelman D., Ben-Shaul A. The vesicle-micelle transition in mixed lipidsurfactant systems: a molecular model. Langmuir. 1995;11:1154–1161. [Google Scholar]
  • 20.May S., Ben-Shaul A. Spontaneous curvature and thermodynamic stability of mixed amphiphilic layers. J. Phys. Chem. 1995;103:3839–3849. [Google Scholar]
  • 21.Kozlov M.M., Andelman D. Theory and phenomenology of mixed amphiphilic aggregates. Curr. Opinion in Colloid & Interface Science. 1996;1:362–336. [Google Scholar]
  • 22.Israelachvili J.N. Intermolecular and surface forces. London: Academic; 1985. [Google Scholar]
  • 23.Hui S.W., Sen A. Effect of lipid packing on polimorphic phase behaviour and membranes properties. Proc. Natl. Acad. Sci. (U.S.A.) 1989;86:5825–5829. doi: 10.1073/pnas.86.15.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Seifert, S. and Lipowsky, R.: Morphology of vesicles, in R. Lipowsky and E. Sackmann (eds.), Handbook of Biological Physics, Volume I, Elsevier Science B.V., 1995.
  • 25.Dobereiner H.-G., Selchow O., Lipiwsky R. Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. 1999;28:174–178. [Google Scholar]
  • 26.Goetz R., Lipowsky R. Computer simulation of bilayer membranes: Self-assembly and interfacial tension. J. Chem. Phys. 1998;108:7397–7409. [Google Scholar]
  • 27.Shibata O., Miyoshi H., Nagadome S., Sugihara G., Igimi H. Mixed monolayer properties of bile acids spread on the concentrated sodium chloride solution. J. Coll. Interface Sci. 1991;146:594–597. [Google Scholar]
  • 28.Miyoshi H., Nagadome S., Sugihara G., Kagimoto H., Ikawa Y., Igimi H., Shibata O. Mixed monolayer formation of bile acid mixtures: chenodeoxycholic acid with ursodeoxycholic acid and cholic acid with β-muricholic acid. J. Coll. Interface Sci. 1992;149:216–225. [Google Scholar]
  • 29.Sundari N.S., Srinivas V., Ganesh K.N., Balasubramanian D. Micellar properties of the zwitterionic detergents CHAPS and CHAPSO used in membrane biochemistry. J. Indian Chem. Soc. 1985;62:851–854. [Google Scholar]
  • 30.Swanson-Vethamuthu M., Almgren M., Hasson P., Zhao J. Surface tension studies of cetyltrimethylammonium bromide-bile salt association. Langmuir. 1996;12:2186–2189. [Google Scholar]
  • 31.Leibler S. Curvature instability in membrane. J. Physique. 1986;47:507–516. [Google Scholar]
  • 32.Leibler S., Andelman D. Ordered and meso-structures in membranes and amphiphilic films. J. Physique. 1987;48:2013–2018. [Google Scholar]
  • 33.Wonneberg W. Model of surface formation by stabilized spinodal decomposition. Z. Phys. B. 1982;46:73–79. [Google Scholar]
  • 34.Milner S.T., Safran S.A. Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A. 1987;36:4371–4379. doi: 10.1103/physreva.36.4371. [DOI] [PubMed] [Google Scholar]
  • 35.Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  • 36.Carey, M.C.: Physical-chemical properties of bile acids and their salts, in H. Danielson and J. Sjövall (eds.), Sterols and Bile Acids, Elsevier Science Publishers B.V., 1985, pp. 345–403.
  • 37.Cahn J.W. On spinodal decomposition. Acta Metall. 1961;9:795–812. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES