Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4529–4533. doi: 10.1073/pnas.81.14.4529

Specific binding of leukotriene C4 to ileal segments and subcellular fractions of ileal smooth muscle cells.

S Krilis, R A Lewis, E J Corey, K F Austen
PMCID: PMC345624  PMID: 6087330

Abstract

A specific high-affinity receptor for leukotriene C4 (LTC4) has been identified on segments of longitudinal smooth muscle from guinea pig ileum, in disrupted cells obtained from the ileal segments, and in subcellular fractions enriched for mitochondrial membranes and plasma membranes, respectively. Specific [3H]LTC4 binding at a fixed input at 4 degrees C reached a plateau at 60 min with each of the four preparations and was greater than 80% reversible after binding reached equilibrium by the introduction of excess unlabeled homoligand. LIGAND analysis demonstrated a single high-affinity receptor on the smooth muscle segments, the disrupted cells, and the subcellular fractions enriched for mitochondrial membranes and for plasma membranes with respective Kd values of 7.6 nM, 1.3 nM, 13 nM, and 8.5 nM. These Kd values overlap with the concentration of LTC4 known to elicit a spasmogenic response in the ileal muscle, indicating that the radioligand recognizes a receptor that mediates the biological response. Competition analysis with disrupted ileal cells and subcellular fractions with a fixed input of LTC4 radioligand and incremental concentrations of the natural sulfidopeptide leukotrienes demonstrated leukotriene D4 (LTD4) to be 1-3 logarithms less active than LTC4 and leukotriene E4 (LTE4) to be essentially inactive. Thus, ileal longitudinal smooth muscle cells possess a high-affinity receptor that is selective for LTC4 and that receptor exhibits both a plasma membrane and subcellular distribution.

Full text

PDF
4529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. K., Brashler J. R., Hammarström S., Samuelsson B. Identification of a component of rat mononuclear cell SRS as leukotriene D. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1121–1126. doi: 10.1016/0006-291x(80)90605-1. [DOI] [PubMed] [Google Scholar]
  2. Fischer H. D., Gonzalez-Noriega A., Sly W. S., Morré D. J. Phosphomannosyl-enzyme receptors in rat liver. Subcellular distribution and role in intracellular transport of lysosomal enzymes. J Biol Chem. 1980 Oct 25;255(20):9608–9615. [PubMed] [Google Scholar]
  3. Johns A., Riehl R. M. A simple method for preparing single cell suspensions of heart and smooth muscle for radioreceptor labeling studies. J Pharmacol Methods. 1982 Mar;7(2):153–159. doi: 10.1016/0160-5402(82)90028-6. [DOI] [PubMed] [Google Scholar]
  4. Kosterlitz H. W., Lydon R. J., Watt A. J. The effects of adrenaline, noradrenaline and isoprenaline on inhibitory alpha- and beta-adrenoceptors in the longitudinal muscle of the guinea-pig ileum. Br J Pharmacol. 1970 Jun;39(2):398–413. doi: 10.1111/j.1476-5381.1970.tb12903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Krilis S., Lewis R. A., Corey E. J., Austen K. F. Bioconversion of C-6 sulfidopeptide leukotrienes by the responding guinea pig ileum determines the time course of its contraction. J Clin Invest. 1983 Apr;71(4):909–915. doi: 10.1172/JCI110845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krilis S., Lewis R. A., Corey E. J., Austen K. F. Specific receptors for leukotriene C4 on a smooth muscle cell line. J Clin Invest. 1983 Oct;72(4):1516–1519. doi: 10.1172/JCI111109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kwan C. Y., Garfield R., Daniel E. E. An improved procedure for the isolation of plasma membranes from rat mesenteric arteries. J Mol Cell Cardiol. 1979 Jul;11(7):639–659. doi: 10.1016/0022-2828(79)90378-x. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lewis R. A., Drazen J. M., Austen K. F., Clark D. A., Corey E. J. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun. 1980 Sep 16;96(1):271–277. doi: 10.1016/0006-291x(80)91210-3. [DOI] [PubMed] [Google Scholar]
  10. Matlib M. A., Crankshaw J., Garfield R. E., Crankshaw D. J., Kwan C. Y., Branda L. Q., Daniel E. E. Characterization of membrane fractions and isolation of purified plasma membranes from rat myometrium. J Biol Chem. 1979 Mar 25;254(6):1834–1840. [PubMed] [Google Scholar]
  11. Morris H. R., Taylor G. W., Piper P. J., Tippins J. R. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature. 1980 May 8;285(5760):104–106. doi: 10.1038/285104a0. [DOI] [PubMed] [Google Scholar]
  12. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  13. Murphy R. C., Hammarström S., Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4275–4279. doi: 10.1073/pnas.76.9.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pong S. S., DeHaven R. N. Characterization of a leukotriene D4 receptor in guinea pig lung. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7415–7419. doi: 10.1073/pnas.80.24.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pong S. S., DeHaven R. N., Kuehl F. A., Jr, Egan R. W. Leukotriene C4 binding to rat lung membranes. J Biol Chem. 1983 Aug 25;258(16):9616–9619. [PubMed] [Google Scholar]
  16. Rao C. V., Mitra S. B. Distribution of PGE and PGF2 alpha receptor proteins in the intracellular organelles of bovine corpora lutea. Methods Enzymol. 1982;86:192–202. doi: 10.1016/0076-6879(82)86190-9. [DOI] [PubMed] [Google Scholar]
  17. Tanabe T., Pricer W. E., Jr, Ashwell G. Subcellular membrane topology and turnover of a rat hepatic binding protein specific for asialoglycoproteins. J Biol Chem. 1979 Feb 25;254(4):1038–1043. [PubMed] [Google Scholar]
  18. Warren R., Doyle D. Turnover of the surface proteins and the receptor for serum asialoglycoproteins in primary cultures of rat hepatocytes. J Biol Chem. 1981 Feb 10;256(3):1346–1355. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES