Abstract
Monocyte or macrophage polykaryons (MP) are seen in different tissues in various inflammatory states and in normal bone (osteoclasts). The factors controlling the formation and the function of MP are not completely understood. This study was designed to evaluate the effects of the lymphokine gamma-interferon (IFN-gamma) on human monocyte function in vitro. Purified recombinant IFN-gamma [20-200 units/ml (0.1-1.0 nM)] caused the appearance of MP in cultures of normal human monocytes cultured in 10% unheated autologous serum. The MP were noted by as early as 36 hr of culture with fusion indices of 40%-60% and up to 160 nuclei per cell. The effect was seen with both recombinant IFN-gamma and natural IFN-gamma produced by Staphylococcal enterotoxin A-stimulated lymphocytes, but IFN-alpha (leukocyte-derived and recombinant) and IFN-beta did not induce MP formation. The activity of the IFN-gamma was destroyed by heating at 56 degrees C for 4 hr, incubating at pH 2 for 3 hr, or incubating with antibody against IFN-gamma. Populations of monocytes incubated 3 days with 100 units of IFN-gamma per ml (0.5 nM) had enhanced capacity to produce H2O2 in response to phorbol 12-myristate 13-acetate and increased content of acid phosphatase and plasminogen activator. As determined by autoradiography, the MP did not incorporate [3H]dThd into their nuclei. Thus, the IFN-gamma appears to induce MP formation by a process of monocyte fusion, and to "activate" monocytes, as judged by various parameters.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. O. The granulomatous inflammatory response. A review. Am J Pathol. 1976 Jul;84(1):164–192. [PMC free article] [PubMed] [Google Scholar]
- Bonucci E. New knowledge on the origin, function and fate of osteoclasts. Clin Orthop Relat Res. 1981 Jul-Aug;(158):252–269. [PubMed] [Google Scholar]
- Campbell E. E., Shifman M. A., Lewis J. G., Pasqua J. J., Pizzo S. V. A colorimetric assay for releasable plasminogen activator. Clin Chem. 1982 May;28(5):1125–1128. [PubMed] [Google Scholar]
- Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
- Fischer D. G., Golightly M. G., Koren H. S. Potentiation of the cytolytic activity of peripheral blood monocytes by lymphokines and interferon. J Immunol. 1983 Mar;130(3):1220–1225. [PubMed] [Google Scholar]
- Galindo B., Lazdins J., Castillo R. Fusion of normal rabbit alveolar macrophages induced by supernatant fluids from BCG-sensitized lymph node cells after elicitation by antigen. Infect Immun. 1974 Feb;9(2):212–216. doi: 10.1128/iai.9.2.212-216.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray P. W., Leung D. W., Pennica D., Yelverton E., Najarian R., Simonsen C. C., Derynck R., Sherwood P. J., Wallace D. M., Berger S. L. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature. 1982 Feb 11;295(5849):503–508. doi: 10.1038/295503a0. [DOI] [PubMed] [Google Scholar]
- Greineder D. K., Connorton K. J., David J. R. Plasminogen activator production by human monocytes. I. Enhancement by activated lymphocytes and lymphocyte products. J Immunol. 1979 Dec;123(6):2808–2813. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Le J., Prensky W., Yip Y. K., Chang Z., Hoffman T., Stevenson H. C., Balazs I., Sadlik J. R., Vilcek J. Activation of human monocyte cytotoxicity by natural and recombinant immune interferon. J Immunol. 1983 Dec;131(6):2821–2826. [PubMed] [Google Scholar]
- Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
- Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Männel D. N., Falk W. Interferon-gamma is required in activation of macrophages for tumor cytotoxicity. Cell Immunol. 1983 Jul 15;79(2):396–402. doi: 10.1016/0008-8749(83)90082-5. [DOI] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
- Parks D. E., Weiser R. S. The role of phagocytosis and natural lymphokines in the fusion of alveolar macrophages to form Langhans giant cells. J Reticuloendothel Soc. 1975 Apr;17(4):219–228. [PubMed] [Google Scholar]
- Postlethwaite A. E., Jackson B. K., Beachey E. H., Kang A. H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J Exp Med. 1982 Jan 1;155(1):168–178. doi: 10.1084/jem.155.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preble O. T., Friedman R. M. Interferon-induced alterations in cells: relevance to viral and nonviral diseases. Lab Invest. 1983 Jul;49(1):4–18. [PubMed] [Google Scholar]
- Roberts W. K., Vasil A. Evidence for the identity of murine gamma interferon and macrophage activating factor. J Interferon Res. 1982;2(4):519–532. doi: 10.1089/jir.1982.2.519. [DOI] [PubMed] [Google Scholar]
- Rothermel C. D., Rubin B. Y., Murray H. W. Gamma-interferon is the factor in lymphokine that activates human macrophages to inhibit intracellular Chlamydia psittaci replication. J Immunol. 1983 Nov;131(5):2542–2544. [PubMed] [Google Scholar]
- Schnyder J., Baggiolini M. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J Exp Med. 1978 Aug 1;148(2):435–450. doi: 10.1084/jem.148.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz R. M., Kleinschmidt W. J. Functional identity between murine gamma interferon and macrophage activating factor. Nature. 1983 Sep 15;305(5931):239–240. doi: 10.1038/305239a0. [DOI] [PubMed] [Google Scholar]
- Sone S., Bucana C., Hoyer L. C., Fidler I. J. Kinetics and ultrastructural studies of the induction of rat alveolar macrophage fusion by mediators released from mitogen-stimulated lymphocytes. Am J Pathol. 1981 May;103(2):234–246. [PMC free article] [PubMed] [Google Scholar]
- Vassalli J. D., Reich E. Macrophage plasminogen activator: induction by products of activated lymphoid cells. J Exp Med. 1977 Feb 1;145(2):429–437. doi: 10.1084/jem.145.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warfel A. H., Hadden J. W. Macrophage fusion factor elicited from BGG-sensitized lymphocytes. Am J Pathol. 1978 Dec;93(3):753–770. [PMC free article] [PubMed] [Google Scholar]
- Weinberg J. B., Haney A. F. Spontaneous tumor cell killing by human blood monocytes and human peritoneal macrophages: lack of alteration by endotoxin or quenchers of reactive oxygen species. J Natl Cancer Inst. 1983 Jun;70(6):1005–1010. [PubMed] [Google Scholar]
- Weinberg J. B. Macrophage polykaryon formation in vitro by peritoneal cells from mice given injections of sodium periodate. Am J Pathol. 1983 Feb;110(2):182–192. [PMC free article] [PubMed] [Google Scholar]
- Weinberg J. B., Misukonis M. A. Phorbol diester-induced H2O2 production by peritoneal macrophages. Different H2O2 production by macrophages from normal and BCG-infected mice despite comparable phorbol diester receptors. Cell Immunol. 1983 Sep;80(2):405–415. doi: 10.1016/0008-8749(83)90127-2. [DOI] [PubMed] [Google Scholar]
- Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]