Abstract
We have suggested a model for the electronic excited states of the minorplant antenna, CP29, by incorporating a considerable part of the currentinformation offered by structure determination, site-directed mutagenesis,and spectroscopy in the modeling.We have assumed that the electronic excited states of the complex havebeen decided by the chlorophyll-chlorophyll (Chl) and Chl-proteininteractions and have modeled the Coulombic interaction between a pairof Chls in the point-dipole approximation and the Chl-protein interactionsare treated as empirical fit parameters.We have suggested the Qy dipole moment orientations and the siteenergies for all the chlorophylls in the complex through a simultaneoussimulation of the absorption and linear dichroism spectra.The assignments proposed have been discussed to yield a satisfactoryreproduction of all prominent features of the absorption, linear and circulardichroism spectra as well as the key spectral and temporal characteristics ofthe energy transfer processes among the chlorophylls.The orientations and the spectral assignments obtained by relatively simpleexciton calculations have been necessary to provide a good point ofdeparture for more detailed treatments of structure-function relationship inCP29. Moreover, it has been discussed that the CP29 model suggested canguide the studies for a better understanding of the structure-functionrelationship in the major plant antenna, LHCII.
Keywords: CP29, electronic excited states, energy transfer, LHCII, light-harvesting complexes, photosynthesis
Full Text
The Full Text of this article is available as a PDF (124.6 KB).
References
- 1.van Grondelle R., Dekker J.P., Gillbro T., Sundström V. Energy Transfer in Photosynthesis. Biochim. Biophys. Acta. 1994;1187:1–65. [Google Scholar]
- 2.Boekema E.J., van Roon H., Calkoen F., Bassi R., Dekker J.P. Multiple Types of Association of Photosystem II and Its Largest Light-Harvesting Antenna in Partially Solubilized Photosystem II Membranes. Biochemistry. 1999;38:2233–2239. doi: 10.1021/bi9827161. [DOI] [PubMed] [Google Scholar]
- 3.Kühlbrandt W., Wang D.N., Fujiyoshi Y. Atomic Model of Plant Light-Harvesting Complex by Electron Crystallography. Nature. 1994;367:614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- 4.Bassi R., Croce R., Cugini D., Sandona D. Mutational Analysis of a Higher Plant Antenna Protein Provides Identification of Chromophores Bound into Multiple Sites. Proc. Natl. Acad. Sci. USA. 1999;96:10056–10061. doi: 10.1073/pnas.96.18.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Zucchelli G., Dainese P., Jennings R.C., Breton J., Garlaschi F.M., Bassi R. Gaussian Decomposition of Absorption and Linear Dichroism Spectra of Outer Antenna Complexes of Photosystem II. Biochemistry. 1994;33:8982–8990. doi: 10.1021/bi00196a016. [DOI] [PubMed] [Google Scholar]
- 6.Giuffra E., Zucchelli G., Sandona D., Croce R., Cugini D., Garlaschi F.M., Bassi R., Jennings R.C. Analysis of Some Optical Properties of Native and Reconstituted Photosystem II Antenna Complex, CP29: Pigment Binding Sites Can be Occupied by Chlorophyll a Or Chlorophyll b and Determine Spectral Forms. Biochemistry. 1997;36:12984–12993. doi: 10.1021/bi9711339. [DOI] [PubMed] [Google Scholar]
- 7.Remelli R., Varotto C., Sandona D., Croce R., Bassi R. Chlorophyll Binding to Monomeric Light-Harvesting Complex'. J. Biol. Chem. 1999;274:33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
- 8.Gradinaru C.C., Pascal A., van Mourik F., Robert B., Horton P., van Grondelle R., van Amerongen H. Ultrafast Evolution of The Excited States in the Minor Chlorophyll a/b Complex CP29 from Green Plants Studied by Energy-Selective Pump-Probe Spectroscopy. Biochemistry. 1999;37:1143–1149. doi: 10.1021/bi9722655. [DOI] [PubMed] [Google Scholar]
- 9.Pascal A., Gradinaru C.C., Wacker U., Peterman E., Calkoen F., Irrgang K-D., Horton P., Renger G., van Grondelle R., Robert B., van Amerongen H. Spectroscopic Characterization of the Spinach Lhcb4 Protein (CP29), A Minor Light-Harvesting Complex of Photosystem II. Eur. J. Biochem. 1999;262:817–823. doi: 10.1046/j.1432-1327.1999.00457.x. [DOI] [PubMed] [Google Scholar]
- 10.Pearlstein R.M. Theoretical Interpretation of the Antenna Spectra. In: Scheer H., editor. The Chlorophylls. Boca Raton: CRC Press; 1991. pp. 1047–1078. [Google Scholar]
- 11.Simonetto R., Crimi M., Sandona D., Croce R., Cinque G., Breton J., Bassi R. Orientation of Chlorophyll Transition Dipole Moments in the Higher-Plant Light-Harvesting Complex CP29. Biochemistry. 1999;38:12974–12983. doi: 10.1021/bi991140s. [DOI] [PubMed] [Google Scholar]
- 12.Krueger B.P., Scholes G.D., Fleming G.R. Calculation of Couplings and Energy-Transfer Pathways Between the Pigments of LH2 by the ab initio Transition Density Cube Method. J. Phys. Chem. B. 1998;102:5378–5386. [Google Scholar]
- 13.Louwe R.J.W., Vrieze J., Hoff A.J., Aartsma T.J. Towards an Integral Interpretation of the Optical Steady-State Spectra of the FMO-Complex of Prosthecochloris aestuarii. II. Exciton Simulations. J. Phys. Chem. B. 1997;101:11280–11287. [Google Scholar]
- 14.Ięeri E.I., Gülen D. Electronic Excited States Excitation Transfer Kinetics in the FMO Protein Complex of the Photosynthetic Bacterium Prosthecochloris aestuarii at Low Temperatures. Eur. Biophys. J. 1999;28:243–253. [Google Scholar]
- 15.Vulto S.I.E., de Baat M.A., Louwe R.J.W., Permentier H.P., Neef T., Miller M., van Amerongen H., Aartsma T.J. Exciton Simulations of Optical Spectra of the FMO Complex from the Green Sulphur Bacterium Chlorobium tepidum at 6 K. J. Phys. Chem. B. 1998;102:9577–9582. [Google Scholar]
- 16.Ięeri E.I. Electronic Excited States and Excitation Transfer Kinetics in the FMO Protein Complex of the Photosynthetic Bacterium Prosthecochloris aestuarii at Low Temperatures. Ankara, Turkey: METU; 1998. [Google Scholar]
- 17.Kleima F.J., Hofmann E., Gobets B., van Stokkum I.H., van Grondelle R., Diederichs K., van Amerongen H. Förster Excitation Energy Transfer in Peridinin-Chlorophyll-a-Protein. Biophys. J. 2000;78:344–353. doi: 10.1016/S0006-3495(00)76597-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Sauer K., Schmidt J.R.L., Schultz A.J. Dimerization of Chlorophyll a, Chlorophyll b and Bacteriochlorophyll in Solution. J. Am. Chem. Soc. 1966;88:2681–2688. [Google Scholar]
- 19.Gülen D., van Grondelle R., van Amerongen H. Structural Information on Light-Harvesting Complex II as obtained from Exciton Calculations and Polarized Spectroscopy. In: Mathis P., editor. Photosynthesis: From Light to Biosphere-Volume I. Dordrecht: Kluwer; 1995. pp. 335–338. [Google Scholar]
- 20.Gülen D., van Grondelle R., van Amerongen H. Structural Information on the Light-Harvesting Complex II of Green Plants that can be Deciphered from Polarized Absorption Characteristics. J. Phys. Chem. B. 1997;101:7256–7261. [Google Scholar]
- 21.Gradinaru C.C., Özdemir S., Gülen D., van Stokkum I.H.M., van Grondelle R., van Amerongen H. The Flow of Excitation Energy in LHCII Monomers: Implications for the Structural Model of the Major Plant Antenna. Biophys. J. 1998;75:3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.van Zandvoort M.A.M.J., Wrobel D., Lettinga P., van Ginkel G., Levine Y.K. The Orientation of the Transition Dipole Moments of Chlorophyll a and Pheophytin in Their Molecular Frame. Photochem. Photobiol. 1995;62:299–308. [Google Scholar]
- 23.Hofmann E., Wrench P., Sharples F.D., Hiller R.G., Welte W., Diederichs K. Structural Basis of Light-Harvesting by Carotenoids-Peridinin-Chlorophyll a-Protein from Amphidinium carterae. Science. 1996;272:1788–1791. doi: 10.1126/science.272.5269.1788. [DOI] [PubMed] [Google Scholar]
- 24.Moog R.S., Kuki A., Fayer M.D., Boxer S.G. Excitation Transport and Trapping in a Synthetic Chlorophyllide Substituted Hemoglobin: Orientation of the Chlorophyll S1 Transition Dipole. Biochemistry. 1984;23:1564–1571. doi: 10.1021/bi00302a034. [DOI] [PubMed] [Google Scholar]
- 25.Fragata M., Norden B., Kurucsev T. Linear Dichroism (250–700 nm) of Chlorophyll a and Pheophytin a Oriented in a Lamellar Phase of Glycerylmonooctaonate/ H2OCharacterization of Electronic Transitions. Photochem. Photobiol. 1988;47:133–143. [Google Scholar]
- 26.Kleima F.J., Hobe S., Calkoen F., Urbanus M.L., Peterman E.J.G., van Grondelle R., Paulsen H., van Amerongen H. Decreasing the Chlorophyll a/b Ratio in Reconstituted LHCII: Structural and Functional Consequences. Biochemistry. 1999;38:6587–6596. doi: 10.1021/bi982823v. [DOI] [PubMed] [Google Scholar]
- 27.Visser H.M., Kleima F.J., van Stokkum I.H.M., van Grondelle R., van Amerongen H. Probing Many Energy-Transfer Processes in the Photosynthetic Light-Harvesting Complex II at 77 K Using Energy Selective Sub-Picosecond Transient Absorption Spectroscopy. Chem. Phys. 1996;210:297–312. [Google Scholar]
- 28.Connelly J.P., Müller M.G., Gatzen G., Mullineaux C.W., Ruban A.V., Horton P., Holzwarth A.R. Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants'. J. Phys. Chem. B. 1997;101:1902–1909. [Google Scholar]
- 29.Özdemir S. Identification of Several Energy Transfer Pathways in the Light-Harvesting Complex II of Green Plants Using Current Structural and Spectroscopic Information. Ankara, Turkey: METU; 1997. [Google Scholar]