Abstract
Dipalmitoleoylphosphatidylethanolamine (DPOPE) membrane is in the Lα phase in neutral pH at 20 °C. The results of small-angle X-ray scattering (SAXS) indicate that an Lα to HII phase transition in DPOPE membranes occurred at pH 1.9 in the absence of salt, and at pH 2.8 in the presence of 0.5 M KCl, at fully hydrated condition at 20 °C. The spontaneous curvature of DPOPE monolayer membrane did not change with a decrease in pH values. To elucidate the mechanism, we have investigated the effect of the cationic dioctadecyldimethylammonium (DODMA) on the structure and phase behavior of DPOPE membrane. The result shows that DODMA stabilizes the HII phase rather than the Lα phase in DPOPE membrane at its low concentrations. Based on these results, the HII phase stability of DPOPE membrane due to low pH is discussed in terms of the spontaneous curvature of the monolayer membrane and the packing energy of acyl chains in the membrane.
Key words: liquid-crystalline phase, inverted hexagonal phase, phase transition, low pH, spontaneous curvature
Full Text
The Full Text of this article is available as a PDF (227.7 KB).
References
- 1.Colotto A., Martin I., Ruysschaert J.M., Sen A., Hui S.W., Epand R.P. Structural study of the interaction between the SIV fusion peptide and model membranes. Briochemistry. 1996;35:980–989. doi: 10.1021/bi951991+. [DOI] [PubMed] [Google Scholar]
- 2.Colotto A., Epand R.P. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayer. Biochemistry. 1997;36:7644–7651. doi: 10.1021/bi970382u. [DOI] [PubMed] [Google Scholar]
- 3.Rietveld A.G., Koorengevel M.C., de Kruijff B. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 1995;14:5506–5513. doi: 10.1002/j.1460-2075.1995.tb00237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. A quantitative model for membrane fusion based on low energy intermediates. Proc. Natl. Acad. Sci. USA. 2001;98:7235–7240. doi: 10.1073/pnas.121191898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Koynova R., Caffrey M. Phases and phase transitions of the hydrated phophatidylethanol-amines. Chem. Phys. Lipids. 1994;69:1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
- 6.Toombes G.E.S., Finnefrock A.C., Tate M.W., Gruner S.M. Determination of Lα–HII phase transition temperature for 1, 2-dioleoyl-sn-glycero-3-phosphatidylethanolamine. Biophys. J. 2002;82:2504–2510. doi: 10.1016/S0006-3495(02)75593-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Seddon J.M., Cevc G., Marsh D. Calorimetric studies of the gel-fluid (Lβ–Lα) and lamellar-inverted hexagonal (Lα–HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry. 1983;22:1280–1289. doi: 10.1021/bi00274a045. [DOI] [PubMed] [Google Scholar]
- 8.Koynova R.D., Tenchov B.G., Quinn P.J. Sugars favour formation of hexagonal (HII) phase at the expense of lamellar liquid-crystalline phase in hydrated phosphatidylethanolamines. Biochim. Biophys. Acta. 1989;980:377–380. [Google Scholar]
- 9.Kirk G.L., Gruner S.M. Lyotropic effects of alkanes and headgroup composition on the Lα–HII lipid liquid crystal phase transition: Hydrocarbon packing versus intrinsic curvature. J. Physique. 1985;46:761–769. [Google Scholar]
- 10.Veiro J.A., Khalifah R.G., Rowe E.S. The polymorphic phase behavior of dielaidoylphosphatidylethanolamine. Effect of n-alkanols. Biochim. Biophys. Acta. 1989;979:251–256. doi: 10.1016/0005-2736(89)90441-0. [DOI] [PubMed] [Google Scholar]
- 11.Furuike S., Levadny V.G., Li S.J., Yamazaki M. Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane. Biophys. J. 1999;77:2015–2023. doi: 10.1016/S0006-3495(99)77042-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Träuble H., Teubner M., Woolley P., Eibl H. Electrostatic interactions at charged lipid membranes. 1. Effects of pH and univalent cations on membrane structure. Biophys. Chem. 1976;4:319–342. doi: 10.1016/0301-4622(76)80013-0. [DOI] [PubMed] [Google Scholar]
- 13.Jähnig F., Harlos K., Vogel H., Eible H. Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt. Biochemistry. 1979;18:1459–1468. doi: 10.1021/bi00575a012. [DOI] [PubMed] [Google Scholar]
- 14.Cevc G., Watts A., Marsh D. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head group hydration. Biochemistry. 1981;20:4955–4965. doi: 10.1021/bi00520a023. [DOI] [PubMed] [Google Scholar]
- 15.Watts A., Harlos K., Marsh D. Charged-induced tilt in ordered-phase phosphatidylglycerol bilayers. Evidence from X-ray diffraction. Biochim. Biophys. Acta. 1981;645:91–96. doi: 10.1016/0005-2736(81)90515-0. [DOI] [PubMed] [Google Scholar]
- 16.Li X., Schick M. Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine. Biophys. J. 2000;78:34–46. doi: 10.1016/s0006-3495(00)76570-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Nayar R., Schmid S.L., Hope M.J., Cullis P.R. Structural preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2 + and Mg2 + Biochim. Biophys. Acta. 1982;688:169–176. doi: 10.1016/0005-2736(82)90592-2. [DOI] [PubMed] [Google Scholar]
- 18.Kinoshita K., Li S.J., Yamazaki M. The mechanism of the stabilization of the hexagonal II (HII) phase in phosphatidylethanolamine membranes in the presence of low concentrations of dimethyl sulfoxide. Eur. Biophys. J. 2001;30:207–220. doi: 10.1007/s002490000127. [DOI] [PubMed] [Google Scholar]
- 19.Li S.J., Yamashita Y., Yamazaki M. Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. Biophys. J. 2001;81:983–993. doi: 10.1016/S0006-3495(01)75756-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Glatter O., Kratky O. Small Angle X-ray Scattering. San Diego, CA: Academic Press; 1982. [Google Scholar]
- 21.Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 1973;28c:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
- 22.Gruner S.M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA. 1985;82:3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Rand R.P., Fuller N.L., Gruner S.M., Parsegian V.A. Membrane curvature, lipid segregation, and structural transition for phospholipids under dual-solvent stress. Biochemistry. 1990;29:76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
- 24.Chen Z., Rand R.P. Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases. Biophys. J. 1998;74:944–952. doi: 10.1016/S0006-3495(98)74017-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Gruner S.M. Stability of lyotropic phases with curved interfaces. J. Phys. Chem. 1989;93:7562–7570. [Google Scholar]
- 26.Turner D.C., Wanf Z.-G., Gruner S.M., Mannock D.A., McElhaney R.M. Structural study of the inverted cubic phases of di-dodecyl alkyl β -D-glucopyranosyl-rac-glycerol. J. Phys. II France. 1992;2:2039–2063. [Google Scholar]
- 27.Templer R.H., Seddon J.M., Warrender N.A. Measuring the elastic parameters for inverse bicontinuous cubic phases. Biophys. Chem. 1994;49:1–12. [Google Scholar]
- 28.Andersson S., Hyde S.T., Larsson K., Lidin S. Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev. 1988;88:221–242. [Google Scholar]
- 29.Kirk G.L., Gruner S.M., Stein D.L. A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane–water systems. Biochemistry. 1984;23:1093–1102. [Google Scholar]
- 30.Marsh D. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys. J. 1996;70:2248–2255. doi: 10.1016/S0006-3495(96)79790-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Seelig J., Macdonald P.M., Scherer P.G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987;26:7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
- 32.Brown M.F., Seelig J. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry. 1978;17:381–384. doi: 10.1021/bi00595a029. [DOI] [PubMed] [Google Scholar]
- 33.Akutsu H., Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry. 1981;20:7366–7373. doi: 10.1021/bi00529a007. [DOI] [PubMed] [Google Scholar]
