Abstract
EosFP is a novel fluorescent protein from the stony coral Lobophyllia hemprichii. Its gene was cloned in Escherichia coli to express the tetrameric wild-type protein. The protein emits strong green fluorescence (516 nm) that shifts toward red (581 nm) upon near-ultraviolet irradiation at ∼390 nm due to a photo-induced modification that involves a break in the peptide backbone next to the chromophore. Using site-directed mutagenesis, dimeric (d1EosFP, d2EosFP) and monomeric (mEosFP) variants were produced with essentially unaltered spectroscopic properties. Here we present a spectroscopic characterization of EosFP and its variants, including room- and low-temperature spectra, fluorescence lifetime determinations, two-photon excitation and two-photon photoconversion. Furthermore, by transfection of a human cancer (HeLa) cell with a fusion construct of a mitochondrial targeting sequence and d2EosFP, we demonstrate how localized photoconversion of EosFP can be employed for resolving intracellular processes.
Key words: fluorescent protein, fusion protein, two-photon excitation, fluorescence spectroscopy, photoconversion
Full Text
The Full Text of this article is available as a PDF (561.3 KB).
References
- Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G., Cormier M.J. Primary Structure of the Aequorea Victoria Green-Fluorescent Protein. Gene. 1992;111:229–233. doi: 10.1016/0378-1119(92)90691-H. [DOI] [PubMed] [Google Scholar]
- Ormö M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J.Crystal Structure of the Aequorea Victoria Green Fluorescent Protein Science 19962731392–1395.1996Sci...273.1392O [DOI] [PubMed] [Google Scholar]
- Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C.Green Fluorescent Protein as a Marker for Gene Expression Science 1994263802–805.1994Sci...263..802C [DOI] [PubMed] [Google Scholar]
- Tsien R.Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Zhang J., Campbell R.E., Ting A.Y., Tsien R.Y. Creating New Fluorescent Probes for Cell Biology. Nat. Rev. Mol. Cell. Biol. 2002;3:906–918. doi: 10.1038/nrm976. [DOI] [PubMed] [Google Scholar]
- Wiedenmann, J.: In Offenlegungsschrift DE 197 18 640 A1, Deutsches Patent-und Markenamt, Munich, Germany, 1997, pp 1–18.
- Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. Fluorescent Proteins from Nonbioluminescent Anthozoa Species. Nat. Biotechnol. 1999;17:969–973. doi: 10.1038/13657. [DOI] [PubMed] [Google Scholar]
- Fradkov A.F., Chen Y., Ding L., Barsova E.V., Matz M.V., Lukyanov S.A. Novel Fluorescent Protein from Discosoma Coral and its Mutants Possesses a Unique Far-Red Fluorescence. FEBS Lett. 2000;479:127–130. doi: 10.1016/S0014-5793(00)01895-0. [DOI] [PubMed] [Google Scholar]
- Wiedenmann J., Elke C., Spindler K.D., Funke W.Cracks in the beta-can: Fluorescent Proteins from Anemonia Sulcata (Anthozoa, Actinaria) Proc. Natl. Acad. Sci. U.S.A. 20009714091–14096. 10.1073/pnas.97.26.140912000PNAS...9714091W [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiedenmann J., Ivanchenko S., Oswald F., Nienhaus G.U. Identification of GFP-like Proteins in Nonbioluminescent, Azooxanthellate Anthozoa Opens New Perspectives for Bioprospecting. Mar. Biotechnol. (N.Y.) 2004;6:270–277. doi: 10.1007/s10126-004-3006-4. [DOI] [PubMed] [Google Scholar]
- Wiedenmann J., Schenk A., Röcker C., Girod A., Spindler K.D., Nienhaus G.U.A Far-Red Fluorescent Protein with Fast Maturation and Reduced Oligomerization Tendency from Entacmaea Quadricolor (Anthozoa, Actinaria) Proc. Natl. Acad. Sci. U.S.A. 20029911646–11651. 10.1073/pnas.1821571992002PNAS...9911646W [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenk A., Ivanchenko S., Röcker C., Wiedenmann J., Nienhaus G.U. Photodynamics of Red Fluorescent Proteins Studied by Fluorescence Correlation Spectroscopy. Biophys. J. 2004;86:384–394. doi: 10.1016/S0006-3495(04)74114-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baird G.S., Zacharias D.A., Tsien R.Y.Biochemistry, Mutagenesis, and Oligomerization of DsRed, a Red Fluorescent Protein from Coral Proc. Natl. Acad. Sci. U.S.A. 20009711984–11989.2000PNAS...9711984B [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall M.A., Socolich M., Ranganathan R. The Structural Basis for Red Fluorescence in the Tetrameric GFP Homolog DsRed. Nat. Struct. Biol. 2000;7:1133–1138. doi: 10.1038/81992. [DOI] [PubMed] [Google Scholar]
- Yarbrough D., Wachter R.M., Kallio K., Matz M.V., Remington S.J.Refined Crystal Structure of DsRed, a Red Fluorescent Protein from Coral, at 2.0-A Resolution Proc. Natl. Acad. Sci. U.S.A. 200198462–467. 10.1073/pnas.98.2.4622001PNAS...98..462Y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nienhaus K., Vallone B., Renzi F., Wiedenmann J., Nienhaus G.U. Crystallization and Preliminary X-ray Diffraction Analysis of the Red Fluorescent Protein eqFP611. Acta Crystallogr. D Biol. Crystallogr. 2003;59:1253–1255. doi: 10.1107/S0907444903008837. [DOI] [PubMed] [Google Scholar]
- Shagin D.A., Barsova E.V., Yanushevich Y.G., Fradkov A.F., Lukyanov K.A., Labas Y.A., Semenova T.N., Ugalde J.A., Meyers A., Nunez J.M., Widder E.A., Lukyanov S.A., Matz M.V. GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity. Mol. Biol. Evol. 2004;21:841–850. doi: 10.1093/molbev/msh079. [DOI] [PubMed] [Google Scholar]
- Lippincott-Schwartz J., Patterson G.H.Development and Use of Fluorescent Protein Markers in Living Cells Science 200330087–91. 10.1126/science.10825202003Sci...300...87L [DOI] [PubMed] [Google Scholar]
- Patterson G.H., Lippincott-Schwartz J.A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells Science 20022971873–1877. 10.1126/science.10749522002Sci...297.1873P [DOI] [PubMed] [Google Scholar]
- Chudakov D.M., Belousov V.V., Zaraisky A.G., Novoselov V.V., Staroverov D.B., Zorov D.B., Lukyanov S., Lukyanov K.A. Kindling Fluorescent Proteins for Precise In Vivo Photolabeling. Nat. Biotechnol. 2003;21:191–194. doi: 10.1038/nbt778. [DOI] [PubMed] [Google Scholar]
- Ando R., Hama H., Yamamoto-Hino M., Mizuno H., Miyawaki A.An Optical Marker Based on the UV-Induced Green-to-Red Photoconversion of a Fluorescent Protein Proc. Natl. Acad. Sci. U.S.A. 20029912651–12656. 10.1073/pnas.2023205992002PNAS...9912651A [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiedenmann J., Ivanchenko S., Oswald F., Schmitt F., Röcker C., Salih A., Spindler K.D., Nienhaus G.U.EosFP, a Fluorescent Marker Protein with UV-Inducible Green-to-Red Fluorescence Conversion Proc. Natl. Acad. Sci. U.S.A. 200410115905–15910. 10.1073/pnas.04036681012004PNAS..10115905W [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizzuto R., Brini M., Pizzo P., Murgia M., Pozzan T. Chimeric Green Fluorescent Protein as a Tool for Visualizing Subcellular Organelles in Living Cells. Curr. Biol. 1995;5:635–642. doi: 10.1016/S0960-9822(95)00128-X. [DOI] [PubMed] [Google Scholar]
- Mizuno H., Mal T.K., Tong K.I., Ando R., Furuta T., Ikura M., Miyawaki A. Photo-Induced Peptide Cleavage in the Green-to-Red Conversion of a Fluorescent Protein. Mol. Cell. 2003;12:1051–1058. doi: 10.1016/S1097-2765(03)00393-9. [DOI] [PubMed] [Google Scholar]
- Albota M.A., Xu C., Webb W.W.Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm Appl. Opt. 1998377352–7356.1998ApOpt..37.7352A 10.1364/AO.37.007352 [DOI] [PubMed] [Google Scholar]
- Xu C., Zipfel W., Shear J.B., Williams R.M., Webb W.W.Multiphoton Fluorescence Excitation: New Spectral Windows for Biological Nonlinear Microscopy Proc. Natl. Acad. Sci. U.S.A. 19969310763–10768.1996PNAS...9310763X [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwille P., Haupts U., Maiti S., Webb W.W. Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation. Biophys. J. 1999;77:2251–2265. doi: 10.1016/S0006-3495(99)77065-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins T.J., Berridge M.J., Lipp P., Bootman M.D. Mitochondria are Morphologically and Functionally Heterogeneous Within Cells. EMBO J. 2002;21:1616–1627. doi: 10.1093/emboj/21.7.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arimura S., Yamamoto J., Aida G.P., Nakazono M., Tsutsumi N.Frequent Fusion and Fission of Plant Mitochondria with Unequal Nucleoid Distribution Proc. Natl. Acad. Sci. U.S.A. 20041017805–7808. 10.1073/pnas.04010771012004PNAS..101.7805A [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobs S., Schauss A.C., Hell S.W. Photoconversion of Matrix Targeted GFP Enables Analysis of Continuity and Intermixing of the Mitochondrial Lumen. FEBS Lett. 2003;554:194–200. doi: 10.1016/S0014-5793(03)01170-0. [DOI] [PubMed] [Google Scholar]
- Wiedenmann J., Vallone B., Renzi F., Nienhaus K., Ivanchenko S., Röcker C., Nienhaus G.U. The Red Fluorescent Protein eqFP611 and its Genetically Engineered Dimeric Variants. J. Biomed. Opt. 2005;10:14003. doi: 10.1117/1.1854680. [DOI] [PubMed] [Google Scholar]