Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2005 Dec;31(3-4):249–259. doi: 10.1007/s10867-005-0174-z

Targeted Green-Red Photoconversion of EosFP, a Fluorescent Marker Protein

Sergey Ivanchenko 1, Carlheinz Röcker 1, Franz Oswald 2, Jörg Wiedenmann 3, G Ulrich Nienhaus 1,4,
PMCID: PMC3456337  PMID: 23345897

Abstract

EosFP is a novel fluorescent protein from the stony coral Lobophyllia hemprichii. Its gene was cloned in Escherichia coli to express the tetrameric wild-type protein. The protein emits strong green fluorescence (516 nm) that shifts toward red (581 nm) upon near-ultraviolet irradiation at ∼390 nm due to a photo-induced modification that involves a break in the peptide backbone next to the chromophore. Using site-directed mutagenesis, dimeric (d1EosFP, d2EosFP) and monomeric (mEosFP) variants were produced with essentially unaltered spectroscopic properties. Here we present a spectroscopic characterization of EosFP and its variants, including room- and low-temperature spectra, fluorescence lifetime determinations, two-photon excitation and two-photon photoconversion. Furthermore, by transfection of a human cancer (HeLa) cell with a fusion construct of a mitochondrial targeting sequence and d2EosFP, we demonstrate how localized photoconversion of EosFP can be employed for resolving intracellular processes.

Key words: fluorescent protein, fusion protein, two-photon excitation, fluorescence spectroscopy, photoconversion

Full Text

The Full Text of this article is available as a PDF (561.3 KB).

References

  1. Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G., Cormier M.J. Primary Structure of the Aequorea Victoria Green-Fluorescent Protein. Gene. 1992;111:229–233. doi: 10.1016/0378-1119(92)90691-H. [DOI] [PubMed] [Google Scholar]
  2. Ormö M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J.Crystal Structure of the Aequorea Victoria Green Fluorescent Protein Science 19962731392–1395.1996Sci...273.1392O [DOI] [PubMed] [Google Scholar]
  3. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C.Green Fluorescent Protein as a Marker for Gene Expression Science 1994263802–805.1994Sci...263..802C [DOI] [PubMed] [Google Scholar]
  4. Tsien R.Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  5. Zhang J., Campbell R.E., Ting A.Y., Tsien R.Y. Creating New Fluorescent Probes for Cell Biology. Nat. Rev. Mol. Cell. Biol. 2002;3:906–918. doi: 10.1038/nrm976. [DOI] [PubMed] [Google Scholar]
  6. Wiedenmann, J.: In Offenlegungsschrift DE 197 18 640 A1, Deutsches Patent-und Markenamt, Munich, Germany, 1997, pp 1–18.
  7. Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. Fluorescent Proteins from Nonbioluminescent Anthozoa Species. Nat. Biotechnol. 1999;17:969–973. doi: 10.1038/13657. [DOI] [PubMed] [Google Scholar]
  8. Fradkov A.F., Chen Y., Ding L., Barsova E.V., Matz M.V., Lukyanov S.A. Novel Fluorescent Protein from Discosoma Coral and its Mutants Possesses a Unique Far-Red Fluorescence. FEBS Lett. 2000;479:127–130. doi: 10.1016/S0014-5793(00)01895-0. [DOI] [PubMed] [Google Scholar]
  9. Wiedenmann J., Elke C., Spindler K.D., Funke W.Cracks in the beta-can: Fluorescent Proteins from Anemonia Sulcata (Anthozoa, Actinaria) Proc. Natl. Acad. Sci. U.S.A. 20009714091–14096. 10.1073/pnas.97.26.140912000PNAS...9714091W [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wiedenmann J., Ivanchenko S., Oswald F., Nienhaus G.U. Identification of GFP-like Proteins in Nonbioluminescent, Azooxanthellate Anthozoa Opens New Perspectives for Bioprospecting. Mar. Biotechnol. (N.Y.) 2004;6:270–277. doi: 10.1007/s10126-004-3006-4. [DOI] [PubMed] [Google Scholar]
  11. Wiedenmann J., Schenk A., Röcker C., Girod A., Spindler K.D., Nienhaus G.U.A Far-Red Fluorescent Protein with Fast Maturation and Reduced Oligomerization Tendency from Entacmaea Quadricolor (Anthozoa, Actinaria) Proc. Natl. Acad. Sci. U.S.A. 20029911646–11651. 10.1073/pnas.1821571992002PNAS...9911646W [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schenk A., Ivanchenko S., Röcker C., Wiedenmann J., Nienhaus G.U. Photodynamics of Red Fluorescent Proteins Studied by Fluorescence Correlation Spectroscopy. Biophys. J. 2004;86:384–394. doi: 10.1016/S0006-3495(04)74114-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baird G.S., Zacharias D.A., Tsien R.Y.Biochemistry, Mutagenesis, and Oligomerization of DsRed, a Red Fluorescent Protein from Coral Proc. Natl. Acad. Sci. U.S.A. 20009711984–11989.2000PNAS...9711984B [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wall M.A., Socolich M., Ranganathan R. The Structural Basis for Red Fluorescence in the Tetrameric GFP Homolog DsRed. Nat. Struct. Biol. 2000;7:1133–1138. doi: 10.1038/81992. [DOI] [PubMed] [Google Scholar]
  15. Yarbrough D., Wachter R.M., Kallio K., Matz M.V., Remington S.J.Refined Crystal Structure of DsRed, a Red Fluorescent Protein from Coral, at 2.0-A Resolution Proc. Natl. Acad. Sci. U.S.A. 200198462–467. 10.1073/pnas.98.2.4622001PNAS...98..462Y [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nienhaus K., Vallone B., Renzi F., Wiedenmann J., Nienhaus G.U. Crystallization and Preliminary X-ray Diffraction Analysis of the Red Fluorescent Protein eqFP611. Acta Crystallogr. D Biol. Crystallogr. 2003;59:1253–1255. doi: 10.1107/S0907444903008837. [DOI] [PubMed] [Google Scholar]
  17. Shagin D.A., Barsova E.V., Yanushevich Y.G., Fradkov A.F., Lukyanov K.A., Labas Y.A., Semenova T.N., Ugalde J.A., Meyers A., Nunez J.M., Widder E.A., Lukyanov S.A., Matz M.V. GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity. Mol. Biol. Evol. 2004;21:841–850. doi: 10.1093/molbev/msh079. [DOI] [PubMed] [Google Scholar]
  18. Lippincott-Schwartz J., Patterson G.H.Development and Use of Fluorescent Protein Markers in Living Cells Science 200330087–91. 10.1126/science.10825202003Sci...300...87L [DOI] [PubMed] [Google Scholar]
  19. Patterson G.H., Lippincott-Schwartz J.A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells Science 20022971873–1877. 10.1126/science.10749522002Sci...297.1873P [DOI] [PubMed] [Google Scholar]
  20. Chudakov D.M., Belousov V.V., Zaraisky A.G., Novoselov V.V., Staroverov D.B., Zorov D.B., Lukyanov S., Lukyanov K.A. Kindling Fluorescent Proteins for Precise In Vivo Photolabeling. Nat. Biotechnol. 2003;21:191–194. doi: 10.1038/nbt778. [DOI] [PubMed] [Google Scholar]
  21. Ando R., Hama H., Yamamoto-Hino M., Mizuno H., Miyawaki A.An Optical Marker Based on the UV-Induced Green-to-Red Photoconversion of a Fluorescent Protein Proc. Natl. Acad. Sci. U.S.A. 20029912651–12656. 10.1073/pnas.2023205992002PNAS...9912651A [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wiedenmann J., Ivanchenko S., Oswald F., Schmitt F., Röcker C., Salih A., Spindler K.D., Nienhaus G.U.EosFP, a Fluorescent Marker Protein with UV-Inducible Green-to-Red Fluorescence Conversion Proc. Natl. Acad. Sci. U.S.A. 200410115905–15910. 10.1073/pnas.04036681012004PNAS..10115905W [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rizzuto R., Brini M., Pizzo P., Murgia M., Pozzan T. Chimeric Green Fluorescent Protein as a Tool for Visualizing Subcellular Organelles in Living Cells. Curr. Biol. 1995;5:635–642. doi: 10.1016/S0960-9822(95)00128-X. [DOI] [PubMed] [Google Scholar]
  24. Mizuno H., Mal T.K., Tong K.I., Ando R., Furuta T., Ikura M., Miyawaki A. Photo-Induced Peptide Cleavage in the Green-to-Red Conversion of a Fluorescent Protein. Mol. Cell. 2003;12:1051–1058. doi: 10.1016/S1097-2765(03)00393-9. [DOI] [PubMed] [Google Scholar]
  25. Albota M.A., Xu C., Webb W.W.Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm Appl. Opt. 1998377352–7356.1998ApOpt..37.7352A 10.1364/AO.37.007352 [DOI] [PubMed] [Google Scholar]
  26. Xu C., Zipfel W., Shear J.B., Williams R.M., Webb W.W.Multiphoton Fluorescence Excitation: New Spectral Windows for Biological Nonlinear Microscopy Proc. Natl. Acad. Sci. U.S.A. 19969310763–10768.1996PNAS...9310763X [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwille P., Haupts U., Maiti S., Webb W.W. Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation. Biophys. J. 1999;77:2251–2265. doi: 10.1016/S0006-3495(99)77065-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Collins T.J., Berridge M.J., Lipp P., Bootman M.D. Mitochondria are Morphologically and Functionally Heterogeneous Within Cells. EMBO J. 2002;21:1616–1627. doi: 10.1093/emboj/21.7.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Arimura S., Yamamoto J., Aida G.P., Nakazono M., Tsutsumi N.Frequent Fusion and Fission of Plant Mitochondria with Unequal Nucleoid Distribution Proc. Natl. Acad. Sci. U.S.A. 20041017805–7808. 10.1073/pnas.04010771012004PNAS..101.7805A [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jakobs S., Schauss A.C., Hell S.W. Photoconversion of Matrix Targeted GFP Enables Analysis of Continuity and Intermixing of the Mitochondrial Lumen. FEBS Lett. 2003;554:194–200. doi: 10.1016/S0014-5793(03)01170-0. [DOI] [PubMed] [Google Scholar]
  31. Wiedenmann J., Vallone B., Renzi F., Nienhaus K., Ivanchenko S., Röcker C., Nienhaus G.U. The Red Fluorescent Protein eqFP611 and its Genetically Engineered Dimeric Variants. J. Biomed. Opt. 2005;10:14003. doi: 10.1117/1.1854680. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES