Abstract
Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant.
Key words: directed transport, electromagnetic fields in cells, organization in biology
Full Text
The Full Text of this article is available as a PDF (1,003.5 KB).
References
- Groot M.L., Vos M.H., Schlichting I., van Mourik F., Joffre M., Lambry J.C., Martin J.-L.Coherent Infrared Emission from Myoglobin Crystals: An Electric Field Measurement Proc. Natl. Acad. Sci. U.S.A. 20029931323–1328. 10.1073/pnas.2516626982002PNAS...99.1323G [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos M.H., Lambry J.C., Martin J.-L. Excited State Coherent Vibrational Motion in Deoxymyoglobin. J. Chin. Chem. Soc. 2000;47(4A):765–768. [Google Scholar]
- Liebl U., Lipowski G., Negrerie M., Lambry J.C., Martin J.-L., Vos M.H.Coherent Reaction Dynamics in a Bacterial Cytochrome c Oxidase Nature 19994016749181–184.1999Natur.401..181L [DOI] [PubMed] [Google Scholar]
- Lambry, J.C., Vos, M.H. and Martin, J.-L.: Molecular Dynamics Simulation of Carbon Monoxide Dissociation from Heme a(3) in Cytochrome c Oxidase from Paracoccus denitrificans, J. Phys. Chem. A103(49), (1999), 10132–10137.
- Bonvalet A., Nagle J., Berger V., Migus A., Martin J.-L., Joffre M.Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells Phys. Rev. Lett. 199676234392–4395. 10.1103/PhysRevLett.76.43921996PhRvL..76.4392B [DOI] [PubMed] [Google Scholar]
- Vos M.H., Martin J.-L. Femtosecond Processes in Proteins. Biochem. Biophys. Acta. 1999;1411:1–20. doi: 10.1016/s0005-2728(99)00035-3. [DOI] [PubMed] [Google Scholar]
- Pokorný J. Endogenous Electromagnetic Forces in Living Cells: Implications for Transfer of Reaction Components. Electro- Magnetobiol. 2001;20(1):59–73. [Google Scholar]
- Li W., Kaneko K.Long-Range Correlation and Partial 1/fα Spectrum in Noncoding DNA Sequence Europhys. Lett. 199217655–660.1992EL.....17..655L [Google Scholar]
- Voss R.F.Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences Phys. Rev. Lett. 1992683805–3808. 10.1103/PhysRevLett.68.38051992PhRvL..68.3805V [DOI] [PubMed] [Google Scholar]
- Arneodo A., Bacry E., Graves P.V., Muzy J.F.Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis Phys. Rev. Lett. 1995743293–3296.1995PhRvL..74.3293A [DOI] [PubMed] [Google Scholar]
- Buldyrev S.V., Goldberger A.L., Havlin S., Mantegna R.N., Matsa M.E., Peng C.-K., Simons M., Stanley E.H.Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis Phys. Rev. E 1995515084–5091. 10.1103/PhysRevE.51.50841995PhRvE..51.5084B [DOI] [PubMed] [Google Scholar]
- Herzel H., Grosse I.Correlations in DNA Sequences: The Role of Protein Coding Segments Phys. Rev. E 199755800–810. 10.1103/PhysRevE.55.8001997PhRvE..55..800H [DOI] [Google Scholar]
- Audit B., Thermes C., Vaillant C., d'Aubenton-Carafa Y., Muzy J.F., Arneodo A.Long-Range Correlation in Genomic DNA: A Signature of the Nucleosomal Structure Phys. Rev. Lett. 2001862471–2474. 10.1103/PhysRevLett.86.24712001PhRvL..86.2471A [DOI] [PubMed] [Google Scholar]
- Holste, D. and Grosse, I.: Repeats and Correlations in Human DNA Sequences, Phys. Rev. E67 (2003), 061913-1–061913-7. [DOI] [PubMed]
- Maciá, E., Domínguez-Adame, F. and Sánchez, A.: Effects of the Electronic Structure on the dc Conductance of Fibonacci Superlattices, Phys. Rev. B49 (1994-II), 9503–9510. [DOI] [PubMed]
- Roche, S., Bicout, D., Maciá, E. and Kats, E.: Long Range Correlations in DNA: Scaling Properties and Charge Transfer Efficiency, Phys. Rev. Lett. 91 (2003), 228101-1–228101-4. [DOI] [PubMed]
- Bicout D.J., Kats E.Long-Range Electron Transfer in Periodic Nucleotide Base Stacks Phys. Lett. A 2002300479–484. 10.1016/S0375-9601(02)00848-42002PhLA..300..479B [DOI] [Google Scholar]
- Schulz G.E., Schirmer R.H. Principles of Protein Structure. Berlin: Springer; 1979. [Google Scholar]
- Ladik J., Förner W. The Beginnings of Cancer in the Cell. Berlin: Springer; 1994. [Google Scholar]
- Huang X.Q., Jiang S.S., Peng R.W., Liu Y.M., Qiu F., Hu A.Characteristic Wavefunctions of One-Dimensional Periodic, Quasiperiodic and Random Lattices Modern Phys. Lett. B 2003171461–1476.2003MPLB...17.1461H 10.1142/S0217984903006530 [DOI] [Google Scholar]
- Frauenfelder H., Wolynes P.G., Austin R.H. Biological Physics. Rev. Mod. Phys. Centenary. 1999;71(2):S419–S430. [Google Scholar]
- Fröhlich, H.: Quantum Mechanical Concepts in Biology, in M. Marois (ed.), Theoretical Physics and Biology, North Holland, Amsterdam, 1969, pp.13–22.
- Fröhlich H.Bose Condensation of Strongly Excited Longitudinal Electric Modes Phys. Lett. A 196826402–403.1968PhLA...26..402F [Google Scholar]
- Fröhlich H. The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 1980;53:85–152. [Google Scholar]
- Šrobár, F.: An Equifinality Property of the Fröhlich Equations Describing Electromagnetic Activity of the Living Cells, in: Book of Abstracts of the XVIth Int. Symp. Bioelectrochem. Bioenerg., Bratislava, Slovakia, June 1–6, 2001, p. 167.
- Šrobár F., Pokorný J. Topology of Mutual Relationship in the Fröhlich Model. Bioelectrochem. Bioenerg. 1996;41:31–33. [Google Scholar]
- Šrobár F., Pokorný J. Causal Structure of the Fröhlich Model of Cellular Electromagnetic Activity. Electro- Magnetobiol. 1999;18:257–286. [Google Scholar]
- Pokorný J., Jelínek F., Trkal V. Electric Field around Microtubules. Bioelectrochem, Bioenerg. 1998;45:239–245. [Google Scholar]
- Pokorný J., Wu T.-M. Biophysical Aspects of Coherence and Biological Order. Praha; Springer, Berlin: Academia; 1998. [Google Scholar]
- Pokorný J. Viscous Effects on Polar Vibrations in Microtubules. Electromagnetic Biol. Med. 2003;22:15–29. [Google Scholar]
- Pokorný J. Excitation of Vibrations in Microtubules in Living Cells. Bioelectrochem. 2004;63:321–326. doi: 10.1016/j.bioelechem.2003.09.028. [DOI] [PubMed] [Google Scholar]
- Pohl H.A. Oscillating Fields about Growing Cells. Int. J. Quant. Chem. Quant. Biol. Symp. 1980;7:411–431. [Google Scholar]
- Rowlands S., Sewchand L.S. Quantum Mechanical Interaction of Human Erythrocytes. Canad. J. Physiol. Pharmacol. 1982;60:52–59. doi: 10.1139/y82-007. [DOI] [PubMed] [Google Scholar]
- Albrecht-Buehler G.Rudimentary Form of Cellular ‘Vision’ Proc. Natl. Acad. Sci. U.S.A. 1992898288–8293.1992PNAS...89.8288A [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Giudice E., Doglia S., Milani M., Smith C.W., Vitiello G.Magnetic Flux Quantization and Josephson Behaviour in Living Systems Phys. Scr. 198940786–791.1989PhyS...40..786D [Google Scholar]
- Hölzel R., Lamprecht I. Electromagnetic Field around Biological Cells. Neural Network World. 1994;4:327–337. [Google Scholar]
- Pokorný J., Hašek J., Jelínek F., Šaroch J., Palán B. Electromagnetic Activity of Yeast Cells in the M Phase. Electro- Magnetobiol. 2001;20:371–396. [Google Scholar]
- Pelling A.E., Sehati S., Gralla E.B., Valentine J.S., Gimzewski J.K. Local Nanomechanical Motion of the Cell Wall of. Saccharomyces cerevisiae, Science. 2004;305:1147–1150. doi: 10.1126/science.1097640. [DOI] [PubMed] [Google Scholar]
- Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C. and Lubensky, T.C.: Microrheology, Stress Fluctuations, and Active Behavior of Living Cells, Phys. Rev. Lett. 91 (2003), 198101-1–198101-4. [DOI] [PubMed]
- Caspi, A., Granek, R. and Elbaum, M.: Diffusion and Directed Motion in Cellular Transport, Phys. Rev. E66 (2002), 011916-1–011916-12. [DOI] [PubMed]
- Satarić M., Tuszyński J.A., Žakula R.B.Kinklike Excitations as an Energy Transfer Mechanism in Microtubules Phys. Rev. E 199348589–597.1993PhRvE..48..589S [DOI] [PubMed] [Google Scholar]
- Tuszyński J.A., Hameroff S., Satarić M.V., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. theor. Biol. 1995;174:371–380. [Google Scholar]
- Tuszyński, J.A. and Brown, J.A.: Models of Dielectric and Conduction Properties of Microtubules. In: Abstract Book of Int. Symp. Electromagnetic Aspects of Selforganization in Biol., Prague, July 9–12, 2000, pp. 3–4.
- Stracke R., Böhm K.J., Wollweber L., Tuszyński J.A., Unger E. Analysis of the Migration of Single Microtubules in Electric Fields. Biochem. Biophys. Res. Comm. 2002;293:602–609. doi: 10.1016/S0006-291X(02)00251-6. [DOI] [PubMed] [Google Scholar]
- Caplow M., Ruhlen R.L., Shanks J. The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice. J. Cell Biol. 1994;127:779–788. doi: 10.1083/jcb.127.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caplow M., Shanks J. Evidence that a Single Monolayer Tubulin-GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules. Molec. Biol. Cell. 1996;7:663–675. doi: 10.1091/mbc.7.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papoulis A. Probability, Random Variables and Stochastic Processes. New York: McGraw Hill; 1965. [Google Scholar]
- Denisov S., Klafter J., Urbakh M.Some New Aspects of Lévy Walks and Flights: Directed Transport, Manipulation Through Flights and Population Exchange Physica D 200418789–99. 10.1016/j.physd.2003.09.0022004PhyD..187...89D20466931054.82023 [DOI] [Google Scholar]
- Dekker A.J. Solid State Physics. Englewood Cliffs: Prentice-Hall; 1957. [Google Scholar]
