Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2005 Dec;31(3-4):599–606. doi: 10.1007/s10867-005-6063-7

Homochirality in Bio-Organic Systems and Glyceraldehyde in the Formose Reaction

S Toxvaerd 1,
PMCID: PMC3456342  PMID: 23345921

Abstract

The article explores the possibility that the ordering of bio-organic molecules into a homochiral assembly at the origin of life was performed not in aqueous solutions of amino acids or related materials but in racemic glyceraldehyde in the “formose” reaction at high concentration and temperature. Based on physical chemical evidence and computer simulations of condensed fluids, it is argued that the isomerization kinetics of glyceraldehyde is responszible of the symmetry break and the ordering of molecules into homochiral domains.

Key words: homochirality, formose reaction, origin of life

Full Text

The Full Text of this article is available as a PDF (400.4 KB).

References

  1. Butlerow A. Formation Synthetique d'une Substance Sucrée. Compt. Rend. Acad. Set. 1861;53:145–147. [Google Scholar]
  2. Breslow R. On the Mechanism of the Formose Reaction. Thetrahedron Lett. 1959;21:22–26. [Google Scholar]
  3. Schlesinger G., Miller S.L. Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2. J. Mol. Evol. 1983;19:383–390. doi: 10.1007/BF02101643. [DOI] [PubMed] [Google Scholar]
  4. Vladimirov M.G., Ryzhkov Y.F., Alekseev V.A., Bogdanovskaya V.A., Otroshchenko V.A., Kritsky M.S.Elektrochemical Reduction of Carbon Dioxide on Pyrite as a Pathway for Abiogenic Formation of Organic Molecules Origin Life Evol. Biosphere 200434347–360. 10.1023/B:ORIG.0000029883.18365.af2004OLEB...34..347V [DOI] [PubMed] [Google Scholar]
  5. Weber A.L.The Sugar Model: Catalysis by Amines and Amino Acid Products Origin Life Evol. Biosphere 20013171–86.2001OLEB...31...71W [DOI] [PubMed] [Google Scholar]
  6. Gabel N.W., Ponnamperuma C.Model for Origin of Monosaccharides Nature 1967216453–455.1967Natur.216..453G [DOI] [PubMed] [Google Scholar]
  7. Washington J.The Possible Role of Volcanic Aquifers in Prebiologic Genesis of Organic Compounds and RNA Origin Life Evol. Biosphere 20003053–79. 10.1023/A:10066926064922000OLEB...30...53W [DOI] [PubMed] [Google Scholar]
  8. Pasteur, M.L.: Recherches sur les Proprietes Specifiques des deux Acides qui composent Acide Racémique, C. R. Acad. Sci. 26 (1848), 535; Ann. Chim. Phy. 28 (1850), 56–99.
  9. Avalos M., Babiano R., Cintas P., Jimenez J.L., Palacios J.C.Symmetry Break by Spontaneous Crystalization – Is It The Most Plausible Source of Terrestrial Handedness We Have Long Been Looking For? – A Reappraisal Origin Life Evol. Biosphere 200434391–405. 10.1023/B:ORIG.0000029886.32034.f32004OLEB...34..391A [DOI] [PubMed] [Google Scholar]
  10. Bada J.L. Kinetics of Racemization of Amino Acids as a Function of pH. J. Amer. Chem. Soc. 1972;94:1371–1373. doi: 10.1021/ja00759a064. [DOI] [PubMed] [Google Scholar]
  11. Fedoroňko M., Königstein J. Kinetics of Mutual Isomerization of Trioses and their Dehydration to Methylglyoxal. Coll. of Czechoslov. Chem. Commun. 1969;34:3881–3894. [Google Scholar]
  12. Pizzarello S.Chemical Evolution and Meteorites: An Update Origin Life Evol. Biosphere 20043425–34. 10.1023/B:ORIG.0000009826.76353.de2004OLEB...34...25P [DOI] [PubMed] [Google Scholar]
  13. Leclercq M., Collet A., et Jacques J. Mésure de la Stabilité des Racémiques Vrais. Tetrahedron. 1976;32:821–828. doi: 10.1016/0040-4020(76)80007-5. [DOI] [Google Scholar]
  14. Gresham W.F., Grigsby W.E. An Improved Synthesis of dl-Glyceraldehyde. J. Org. Chem. 1949;14:1103–1107. doi: 10.1021/jo01158a021. [DOI] [Google Scholar]
  15. Vik, J.-E.: Base-Catalyzed Retro Condensation Reactions of Some ot-Hydroxymethyl Carbonyl and Nitro Compounds, Acta Chem. Scand. B 28 (1974), 509–516.
  16. Morgenlie S. Oxidation of Carbohydrate Derivatives with Silver Carbonate on Celite. Acta Chem. Scand. 1973;27:1557–1564. [Google Scholar]
  17. Takats Z., Nanita C., Cooks R.G. Serine Octamer Reactions: Indicators of Prebiotic Relevance. Angew. Chem. Int. Ed. 2003;42:3521–3523. doi: 10.1002/anie.200351210. [DOI] [PubMed] [Google Scholar]
  18. Kock K.J., Gozzo F.C., Nanita S.C., Takats Z., Eberlin M.N., Cooks R.G. Chiral Transmission Between Amino Acids: Chirally Sellective Amino Acid Substitution in the Serine Octamer as a Possible Step in Homochirogenesis. Angew. Chem. Int. Ed. 2002;41:1721–1724. doi: 10.1002/1521-3773(20020517)41:10<1721::aid-anie1721>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  19. Bystrický, S., Sticzay, T., Polyaková, M. and Fedoroňko, M.: Study of d-glyceraldehyde by Circular Dicroism and Ultraviolet Spectroscopy, Coll. Checoslovak. Chem. Comm. 46 240–245.
  20. Yaylayan V.A., Harty-Majors S., Ismail A.A. Investigation of dl-glyceraldehyde-dihydroxyacetone Interconversion by FTIR Spectroscopy. Carbohydrate Res. 1999;318:20–25. [Google Scholar]
  21. Toxvaerd S. Droplet Formation in a Ternary-Fluid Mixture: Spontaneous Emulsion and Micelle Formation. J. Phys. Chem. 2004;108:8641–8645. [Google Scholar]
  22. Toxvaerd S.Molecular Dynamics Simultions of Isomerization Kinetics in Condensed Fluids Phys. Rev. Lett. 2000854747–4750. 10.1103/PhysRevLett.85.47472000PhRvL..85.4747T [DOI] [PubMed] [Google Scholar]
  23. Toxvaerd S.Domain Catalyzed Chemical Reactions: A Molecular Dynamics Simulation of Isomerization Kinetics J. Chem. Phys. 20041206094–6099. 10.1063/1.16514712004JChPh.120.6094T [DOI] [PubMed] [Google Scholar]
  24. Holland, H.D.: The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton 1984.
  25. Itoh Y.H., Sugai A., Uda I., Itoh T.The Evolution of Lipids Adv. Space Res. 200128719–724.2001AdSpR..28..719I 10.1016/S0273-1177(01)00321-0 [DOI] [PubMed] [Google Scholar]
  26. Peretó J., López-García P., Moreira D. Ancestral Lipid Biosynthesis and Early Membrane Evolution. TRENDS in Biol. Sci. 2004;29:469–477. doi: 10.1016/j.tibs.2004.07.002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES