Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2005 Dec;31(3-4):453–464. doi: 10.1007/s10867-005-6472-7

Red Blood Cell Shape and Fluctuations: Cytoskeleton Confinement and ATP Activity

N Gov 1,, S A Safran 2
PMCID: PMC3456344  PMID: 23345910

Abstract

We review recent theoretical work that analyzes experimental measurements of the shape and fluctuations of red blood cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the situation of elastic cells with that of fluid-filled vesicles. In red blood cells (RBCs), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wave vector and frequency dependence of the fluctuation spectrum of RBCs indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect the transient defects induced in the cytoskeleton network by ATP.

Key words: cytoskeleton, elasticity, membrane, fluctuations, erythrocytes, red blood cells

Full Text

The Full Text of this article is available as a PDF (379.0 KB).

Contributor Information

N. Gov, Email: nir.gov@weizmann.ac.il

S. A. Safran, Email: sam.safran@weizmann.ac.il

References

  1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. Molecular Biology of the Cell. New York: Garfand Publishing; 1994. [Google Scholar]
  2. Gov N., Zilman A., Safran S.Cytoskeleton Confinement and Tension of Red Blood Cell Membranes Phys. Rev. Lett. 200390228101-1–228101-4. 10.1103/PhysRevLett.90.2281012003PhRvL..90v8101G [DOI] [PubMed] [Google Scholar]
  3. Gov N., Safran S.A.Pinning of Fluid Membranes by Periodic Harmonic Potentials Phys. Rev. E 200469011101-1–011101-10. 10.1103/PhysRevE.69.0111012004PhRvE..69a1101G2125696 [DOI] [PubMed] [Google Scholar]
  4. Ling E., Danilov Y.N., Cohen C.M. Modulation of Red Cell Band 4.1 Function by cAMP-Dependent Kinase and Protein Kinase C Phosphorylation. J. Biol. Chem. 1988;263:2209–2216. [PubMed] [Google Scholar]
  5. Manno S., Takakuwa Y., Nagao K., Mohandas N. Modulation of Erythrocyte Membrane Mechanical Function ' by beta-Spectrin Phosphorylation and Dephosphorylation. J. Biol. Chem. 1995;270:5659–5665. doi: 10.1074/jbc.270.10.5659. [DOI] [PubMed] [Google Scholar]
  6. Bennett V. The Spectrin-Actin Junction of Erythrocyte Membrane Skeletons. Bioch. Biophys. Acta. 1989;988:107–121. doi: 10.1016/0304-4157(89)90006-3. [DOI] [PubMed] [Google Scholar]
  7. Safran S.A., editor. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Boulder, CO: Westview Press; 2003. [Google Scholar]
  8. Zilker A., Engelhardt H., Sackmann E. Dynamic Reflection Interference Contract (RIC-) Microscopy: A New Method to Study Surface-Excitations of Cells. J. de Physique. 1987;48:2139–2151. doi: 10.1051/jphys:0198700480120213900. [DOI] [Google Scholar]
  9. Strey H., Peterson M., Sackmann E. Measurement of Erythrocyte Membrane Elasticity by Flicker Eigenmode Decomposition. Biophys. J. 1995;69:478–488. doi: 10.1016/S0006-3495(95)79921-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Peterson M.A.Linear Response of the Human Erthrocyte to Mechanical Stress Phys. Rev. A 1992454116–4135. 10.1103/PhysRevA.45.41161992PhRvA..45.4116P [DOI] [PubMed] [Google Scholar]
  11. Peterson M., Strey H., Sackmann E. Theoretical and Phase Contrast Microscopic Eigenmode Analysis of Erthrocyte Flicker Amplitudes. J. Phys. H France. 1992;2:1273–1285. [Google Scholar]
  12. Zeman K., Engelhard H., Sackmann E. Bending Undulations and Elasticity of the Erthrocyte Membrane: Effects of Cell Shape and Membrane Organization. Eur. Biophys. J. 1990;18:203–219. doi: 10.1007/BF00183373. [DOI] [PubMed] [Google Scholar]
  13. Gov N., Safran S.A. Red-Blood Cell Membrane Fluctuations and Shape Controlled by ATP-Induced Cytoskeletal Defects. Biophys. J. 2005;88:1859–1874. doi: 10.1529/biophysj.104.045328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fournier J.-B., Lacoste D., Raphael E.Fluctuation Spectrum of Fluid Membranes Coupled to an Elastic Meshwork: Jump of the Effective Surface Tension at The Mesh Size Phys. Rev. Lett. 200492018102-1–018102-4.2004PhRvL..92a8102F [DOI] [PubMed] [Google Scholar]
  15. Tuvia S., Levin S., Bitler A., Korenstein R. Mechanical Fluctuations of the Membrane-Skeleton are Dependen ton F-Actin ATPase in Human Erythrocytes. J. Cell Biol. 1998;141:1551–1561. doi: 10.1083/jcb.141.7.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levin S., Korenstein R. Membrane Fluctuations in Erthrocytes are Linked to MgATP-Dependent Dynamic Assembly of the Membrane Skeleton. Biophys. J. 1991;60:733–737. doi: 10.1016/S0006-3495(91)82104-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evans E.A. Bending Elastic Modules of Red Blood Cell Membrane Derived from Buckling Instability in Micropipet Aspiration Tests. Biophys. J. 1983;43:27–30. doi: 10.1016/S0006-3495(83)84319-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dao M., Lim C.T., Suresh S.Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers J. Mech. Phys. Solids 2003512259–2280.2003JMPSo..51.2259D [Google Scholar]
  19. Hoffman J.F. Some Red Blood Cell Phenomenon for the Curious. Blood Cells Mol. Dis. 2004;32:335–340. doi: 10.1016/j.bcmd.2004.01.002. [DOI] [PubMed] [Google Scholar]
  20. Hoffman J.F. Questions for Red Blood Cell Physiologists to Ponder in this Millenium. Biol. Blood Cells Mol. Dis. 2001;27:57–61. doi: 10.1006/bcmd.2000.0351. [DOI] [PubMed] [Google Scholar]
  21. Nakao M. New Insights into Regulation of Erythrocyte Shape. Curr. Opin. Hem. 2002;9:127–132. doi: 10.1097/00062752-200203000-00008. [DOI] [PubMed] [Google Scholar]
  22. Lim, H.W.G., Wortis, M. and Mukhopadhyay, R.: Stornocyte-Discocyte-Echinocyte Sequence of the Human Red Blood Cell: Evidence for the Bilayer-Couple Hypothesis from Membrane Mechanics. P-Natl. Acad. Sci. U.S.A.99 (2002), 16766–16769. [DOI] [PMC free article] [PubMed]
  23. Discher D., Mohandas N., Evans E.A.Molecular Maps of Red Cell Deformation: Hidden Elasticity and in situ connectivity Science 19942661032–1035.1994Sci...266.1032D [DOI] [PubMed] [Google Scholar]
  24. Engelhardt H., Gaub H., Sackmann E.Viscoelastic Properties of Erythrocyte-Membranes in High-Frequency Electric-Fields Nature 1984307378–380. 10.1038/307378a01984Natur.307..378E [DOI] [PubMed] [Google Scholar]
  25. Everaers R., Graham I.S., Zuckermann M.J., Sackmann E.Entropic Elasticity of End Absorbed Polymer Chains: The Spectrin Network of Red Blood Cells as C*-Gel J. Chem. Phys. 19961043774–3781. 10.1063/1.4715391996JChPh.104.3774E [DOI] [Google Scholar]
  26. Zilker A., Engelhardt H., Sackmann E. Dynamic Reflection Interference Contrast (RIC-) Microscopy – A New Method to Study Surface Excitations of Cells and to Measure Membrane Bending Elastic-Moduli. J. de Physique. 1987;48:2139–2151. doi: 10.1051/jphys:0198700480120213900. [DOI] [Google Scholar]
  27. Gov N., Zilman A., Safran S.A.Hydrodynamic of Confined Membranes Phys. Rev. E 2004700111041–01110410. 10.1103/PhysRevE.70.0111042125696 [DOI] [PubMed] [Google Scholar]
  28. Brochard F., Lennon J.F. Frequency Spectrum of the Flicker Phenomenon in Erthrocytes. J. de Physique. 1975;36:1035–1047. [Google Scholar]
  29. Discher D.E., Carl P. New Insights into Red Cell Network Structure, Elasticity, and Spectrin Unfolding – A Current Review. Cell Mol. Biol. Lett. 2001;6:593–606. [PubMed] [Google Scholar]
  30. Seung H.S., Nelson D.R.Defects in Flexible Membranes with Crystalline Order Phys. Rev. A 1988381005–1018. 10.1103/PhysRevA.38.10051988PhRvA..38.1005S [DOI] [PubMed] [Google Scholar]
  31. Carraro C., Nelson D.R.Grain-Boundary Buckling and Spin-Glass Models of Disorder in Membranes Phys. Rev. E 1993483082–3090. 10.1103/PhysRevE.48.30821993PhRvE..48.3082C [DOI] [PubMed] [Google Scholar]
  32. Lidmar J., Mirny L., Nelson D.R. Virus Shapes and Buckling Transitions in Spherical Shells. Phys. Rev. E. 2003;68:0519010-1–051910-10. doi: 10.1103/PhysRevE.68.051910. [DOI] [PubMed] [Google Scholar]
  33. Liverpool T.B.Anomalous Fluctuations of Active Polar Filaments Phys. Rev. E 200367031909-1–031909-5. 10.1103/PhysRevE.67.0319092003PhRvE..67c1909L [DOI] [PubMed] [Google Scholar]
  34. Doi M. Introduction to Polymer Physics. Oxford: Clarendon Press; 1996. [Google Scholar]
  35. Hitler, A. and Korenstein, R.: (submitted).
  36. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. Molecular Biology of the Cell. New York: Garfand Publishing; 1994. [Google Scholar]
  37. Gov N., Zilman A., Safran S.Phys. Rev. Lett. 200390228101. 10.1103/PhysRevLett.90.2281012003PhRvL..90v8101G [DOI] [PubMed] [Google Scholar]
  38. Gov N., Safran S. A.Phys. Rev. E 200469011101. 10.1103/PhysRevE.69.0111012004PhRvE..69a1101G2125696 [DOI] [Google Scholar]
  39. Ling, E., Danilov, Y.N. and Cohen, C.M.: J. Biol. Chem.263 (1988), 2209; Manno, S., Takakuwa, Y., Nagao, K. and Mohandas, N.: J. Biol. Chem.270 (1995), 5659. [DOI] [PubMed]
  40. Bennett V. Bioch. Biophys. Acta. 1989;988:107. doi: 10.1016/0304-4157(89)90006-3. [DOI] [PubMed] [Google Scholar]
  41. Safran S.A., editor. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Boulder, CO: Westview Press; 2003. [Google Scholar]
  42. Zilker, A., Engelhardt, H. and Sackmann, E.: J. de Physique48 (1987), 2139; Strey, H., Peterson, M. and Sackmann, E.: Biophys. J.69 (1995), 478. [DOI] [PMC free article] [PubMed]
  43. Peterson, M.A.: Phys. Rev. A45 (1992), 4116; Peterson, M., Strey, H. and Sackmann, E.: J. Phys. II France2 (1992), 1273.
  44. Zeman K., Engelhard H., Sackmann E. Eur. Biophys. J. 1990;18:203. doi: 10.1007/BF00183373. [DOI] [PubMed] [Google Scholar]
  45. Gov, N. and Safran, S.A.: Biophys. J. in press.
  46. Fournier J.-B., Lacoste D., Raphael E.Phys. Rev. Lett. 2004920181022004PhRvL..92a8102F [DOI] [PubMed] [Google Scholar]
  47. Tuvia, S., Levin, S., Bitler, A. and Korenstein, R.: J. Cell Biol.141 (1998), 1551; Levin, S. and Korenstein, R.: Biophys. J.60 (1991), 733. [DOI] [PMC free article] [PubMed]
  48. Evans, E.A.: Biophys. J.43 (1983), 27; Dao, M., Lim, C.T. and Suresh, S.: J. Mech. Phys. Solids51 (2003), 2259.
  49. Hoffman, J.F.: Gel. Mol. Dis. (in press) Hoffman, J.F.: Biol. Gel. Mol. Dis.27 (2001), 57.
  50. Nakao M. Curr. Opin. Hem. 2002;9:127. doi: 10.1097/00062752-200203000-00008. [DOI] [PubMed] [Google Scholar]
  51. Gerald L.H.W., Wortis M., Mukhopadhyay R.PNAS 200299167662002PNAS...9916766L [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Discher, D., Mohandas, N. and Evans, E.A.: Science266 (1994), 1032; Engelhardt, H., Gaub, H. and Sackmann, E.: Nature307 (1984), 378. [DOI] [PubMed]
  53. Everaers R., Graham I.S., Zuckermann M.J., Sackmann E.J. Chera. Phys. 199610437741996JChPh.104.3774E [Google Scholar]
  54. Zilker A., Engelhardt H., Sackmann E. J. de Physique. 1987;48:2139. doi: 10.1051/jphys:0198700480120213900. [DOI] [Google Scholar]
  55. Gov N., Zilman A., Safran S.A.Phys. Rev. E 200470011104. 10.1103/PhysRevE.70.0111042004PhRvE..70a1104G2125696 [DOI] [PubMed] [Google Scholar]
  56. Brochard F., Lennon J.F. J. de Physique. 1975;36:1035. [Google Scholar]
  57. Discher D.E., Carl P. Cell. Mol. Biol. Lett. 2001;6:593. [PubMed] [Google Scholar]
  58. Seung, H.S. and Nelson, D.R.: Phys. Rev. A38 (1988), 1005; Carraro, C. and Nelson, D.R.: Phys. Rev. E48 (1993), 3082; Lidmar, J., Mirny, L. and Nelson, D.R.: Phys. Rev. E68 (2003), 0519010. [DOI] [PubMed]
  59. Liverpool T.B.Phys. Rev. E 200367031909. 10.1103/PhysRevE.67.0319092003PhRvE..67c1909L [DOI] [PubMed] [Google Scholar]
  60. Doi M. Introduction to Polymer Physics. Oxford: Clarendon Press; 1996. [Google Scholar]
  61. Bitler, A. and Korenstein, R.: (in press).

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES